Fourier Analysis—A Signal Processing Approach

D. Sundararajan

Fourier Analysis—A Signal Processing Approach

 D. Sundararajan
 Formerly at Department of Electrical and Computer Engineering
 Concordia University
 Montreal, QC, Canada

Additional material to this book can be downloaded from http://extras.springer.com.

ISBN 978-981-13-1692-0 ISBN 978-981-13-1693-7 (eBook) https://doi.org/10.1007/978-981-13-1693-7

Library of Congress Control Number: 2018949334

© Springer Nature Singapore Pte Ltd. 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Transform methods dominate the study of linear time-invariant systems in all the areas of science and engineering, such as circuit theory, signal/image processing, communications, controls, vibration analysis, remote sensing, biomedical systems, optics, acoustics. The heart of the transform methods is Fourier analysis. Several other often used transforms are generalizations or specific versions of Fourier analysis. It is unique in that it is much used in theoretical studies as well as in practice. The reason for the latter case is the availability of fast algorithms to approximate the Fourier spectrum adequately. For example, the existence and continuing growth of digital signal and image processing are due to the ability to implement the Fourier analysis quickly by digital systems. This book is written for engineering, computer science, and physics students, and engineers and scientists. Therefore, Fourier analysis is presented primarily using physical explanations with waveforms and/or examples, keeping the mathematical form to the extent it is necessary for its practical use. In engineering applications of Fourier analysis, its interpretation and use are relatively more important than rigorous proofs. Plenty of examples, figures, tables, programs, and physical explanations make it easy for the reader to get a good grounding in the basics of Fourier signal representation and its applications.

This book is intended to be a textbook for senior undergraduate- and graduate-level Fourier analysis courses in engineering and science departments and a supplementary textbook for a variety of application courses in science and engineering, such as circuit theory, communications, signal processing, controls, remote sensing, image processing, medical analysis, acoustics, optics, and vibration analysis. For engineering professionals, this book will be useful for self-study. In addition, this book will be a reference for anyone, student or professional, specializing in the practical applications of Fourier analysis. The prerequisite for reading this book is a good knowledge of calculus, linear algebra, signals and systems, and programming at the undergraduate level.

Programming is an important component in learning and practicing Fourier analysis. A set of MATLAB® programs are available at the Web site of the book. While the use of a software package is inevitable in most applications, it is better to

vi Preface

use the software in addition to self-developed programs. The effective use of a software package or to develop own programs requires a good grounding in the basic principles of the Fourier analysis. Answers to the selected exercises marked * are given at the end of the book. A Solutions Manual and slides are available for instructors at the Web site of the book.

I assume the responsibility for all the errors in this book and would very much appreciate receiving readers' suggestions and pointing out any errors (email: d_sundararajan@yahoo.com). I am grateful to my Editor and the rest of the team at Springer for their help and encouragement in completing this project. I thank my family for their support during this endeavor.

D. Sundararajan

Contents

1	Signals			
	1.1		ignals	2
		1.1.1	Unit-Impulse Signal	2
		1.1.2	Unit-Step Signal	4
		1.1.3	Unit-Ramp Signal	5
		1.1.4	Sinusoids and Complex Exponentials	5
	1.2	Classifi	cation of Signals	12
		1.2.1	Continuous, Discrete, and Digital Signals	13
		1.2.2	Periodic and Aperiodic Signals	13
		1.2.3	Even- and Odd-Symmetric Signals	14
		1.2.4	Energy and Power Signals	17
		1.2.5	Deterministic and Random Signals	18
		1.2.6	Causal and Noncausal Signals	19
	1.3	Signal (Operations	19
		1.3.1	Time Shifting	19
		1.3.2	Time Scaling	20
	1.4	Complex Numbers		
	1.5	Summary		
2	The	Discrete	Fourier Transform	31
	2.1	The Ex	ponential Function	32
	2.2	2.2 The Complex Exponential Function		
		2.2.1	Euler's Formula	33
		2.2.2	Real Sinusoids in Terms of Complex Exponentials	34
	2.3	The DF	T and the IDFT	35
		2.3.1	The DFT and the IDFT	39
		2.3.2	The Criterion of Approximation	40
		2 2 2	The Metrix Form of the DET and IDET	42

viii Contents

	2.4	Applications of the DFT and the IDFT	50		
		2.4.1 Fourier Boundary Descriptor	50		
	2.5	Summary	54		
3	Prop	erties of the DFT	57		
	3.1	Linearity	57		
	3.2	Periodicity	58		
	3.3	Circular Time Shifting	59		
	3.4	Circular Frequency Shifting	59		
	3.5	Circular Time-Reversal	60		
	3.6	Duality	60		
	3.7	Transform of Complex Conjugates	61		
	3.8	Circular Convolution and Correlation	62		
		3.8.1 Circular Convolution of Time-Domain Sequences	62		
		3.8.2 Circular Convolution of Frequency-Domain			
		Sequences	64		
		3.8.3 Circular Correlation of Time-Domain Sequences	66		
	3.9	Sum and Difference of Sequences	66		
	3.10	Upsampling of a Sequence	67		
	3.11	Zero Padding the Data	69		
	3.12	Symmetry Properties	71		
	3.13	Parseval's Theorem	74		
	3.14	Summary	75		
4	Two-	wo-Dimensional DFT			
	4.1	Two-Dimensional DFT as Two Sets of 1-D DFTs	82		
		4.1.1 Computation of the 2-D DFT	84		
	4.2	The 2-D DFT and IDFT	96		
	4.3	The 2-D DFT of Real-Valued Signals	98		
	4.4	Properties of the 2-D DFT	99		
	4.5	Summary	110		
5	Conv	volution and Correlation	113		
	5.1	Convolution	114		
		5.1.1 Linear Convolution	114		
		5.1.2 Circular Convolution	118		
		5.1.3 2-D Linear Convolution	121		
	5.2	Correlation	128		
		5.2.1 The Linear Correlation	128		
	5.3	Applications	130		
		5.3.1 Lowpass Filtering of Images	130		
		5.3.2 Highpass Filtering of Images	134		

Contents ix

		5.3.4	Orthogonal Frequency Division Modulation	144
		5.3.5	Hilbert Transform	155
	5.4	Summa	ıry	156
6	Aliasi	ing and	Leakage	159
Ü	6.1	_	g Effect	159
	6.2		e Effect	162
		6.2.1	Modeling Data Truncation	163
		6.2.2	Tapered Windows	164
		6.2.3	Hann and Hamming Windows	168
		6.2.4	Reducing the Spectral Leakage	171
	6.3	Picket-l	Fence Effect	174
	6.4		ıry	175
7	Fouri	on Conic	s	179
,	7.1		Series	180
	7.1	7.1.1	FS as a Limiting Case of the DFT.	181
		7.1.1	Gibbs Phenomenon	193
	7.2		ies of the Fourier Series	193
	1.2	7.2.1	Linearity	194
		7.2.1	Symmetry	195
		7.2.3	Time Shifting	197
		7.2.4	Frequency Shifting	198
		7.2.5	Convolution in the Time Domain	198
		7.2.6	Convolution in the Frequency Domain	199
		7.2.7	Time Scaling	201
		7.2.8	Time Differentiation and Integration	201
		7.2.9	Parseval's Theorem	203
	7.3	Applica	ations of the Fourier Series	204
		7.3.1	Analysis of Rectified Power Supply	205
		7.3.2	Steady-State Response of Linear Systems	207
	7.4	Numeri	cal Evaluation of the Fourier Series	210
		7.4.1	Aliasing Effect	212
	7.5	Summa	ıry	214
8	The I	Discrete-	Time Fourier Transform	217
•	8.1		TFT	217
		8.1.1	DTFT as a Limiting Case of the DFT	219
		8.1.2	The DTFT of a Discrete Periodic Signal	228
		8.1.3	Determination of the DFT from the DTFT	228
	8.2	Propert	ies of the Discrete-Time Fourier Transform	229
		8.2.1	Linearity	229
		8.2.2	Time Shifting	229
		8.2.3	Frequency Shifting	230

x Contents

		8.2.4	Convolution in the Time Domain	230
		8.2.5	Correlation	231
		8.2.6	Convolution in the Frequency Domain	232
		8.2.7	Symmetry	233
		8.2.8	Time-Reversal	234
		8.2.9	Time-Expansion	235
		8.2.10	Frequency-Differentiation	236
		8.2.11	Summation	236
		8.2.12	Parseval's Theorem and the Energy Transfer	
			Function	238
	8.3	Applica	ations	238
		8.3.1	Transfer Function and the System Response	239
		8.3.2	Design of Linear-Phase FIR Digital Filters Using	
			Windows	241
		8.3.3	Digital Differentiator	242
		8.3.4	Hilbert Transform	243
		8.3.5	Downsampling	243
	8.4	Approx	ximation of the Discrete-Time Fourier Transform	245
	8.5	Summa	nry	246
9	The	Fourier '	Transform	249
	9.1		as a Limiting Case of the FS	249
		9.1.1	The FT Using Orthogonality	252
		9.1.2	Existence of the FT	253
		9.1.3	Determination of the FS from the FT	255
	9.2	Propert	ies of the Fourier Transform	258
		9.2.1	Linearity	258
		9.2.2	Duality	259
		9.2.3	Symmetry	260
		9.2.4	Time Shifting	261
		9.2.5	Frequency Shifting	261
		9.2.6	Convolution in the Time Domain	262
		9.2.7	Convolution in the Frequency Domain	263
		9.2.8	Conjugation	263
		9.2.9	Cross-Correlation	264
		9.2.10	Time-Reversal	265
		9.2.11	Time Scaling	265
		9.2.12	Time Differentiation	267
		9.2.13	Time Integration	268
		9.2.14	Frequency-Differentiation	269
		9.2.15	Parseval's Theorem and the Energy Transfer	
			Function	270

Contents xi

	9.3 Fourier Transform of Mixed Class of Signals			271
		9.3.1	The FT of a Continuous Periodic Signal	272
		9.3.2	The FT of a Sampled Signal and the Aliasing	
			Effect	273
		9.3.3	The FT and the DTFT of Sampled Aperiodic	
			Signals	277
		9.3.4	The FT and the DFT of Sampled Periodic Signals	277
		9.3.5	Reconstruction of the Continuous Signal from	
			Its Sampled Version	280
	9.4	Applica	ations of the Fourier Transform	280
		9.4.1	Transfer Function and the System Response	280
		9.4.2	Ideal Filters and Their Unrealizability	283
	9.5	Approx	ximation of the Fourier Transform	285
	9.6	Summa	ary	289
10	Fast (Comput	ation of the DFT	293
	10.1	Half-W	Vave Symmetry of Periodic Waveforms	294
	10.2	The PN	M DIF DFT Algorithm	296
	10.3			
		10.3.1	Basics of the PM DIT DFT Algorithm	306
	10.4	Efficier	nt Computation of the DFT of Real Data	308
		10.4.1	Two DFTs of Real Data Simultaneously	308
		10.4.2	DFT of a Single Real Data Set	312
	10.5	Summa	ary	317
App	endix	A: Tra	nsform Pairs and Properties	321
App	endix	B: Usef	ful Mathematical Formulas	329
Bibl	liograp	ohy		335
Ans	wers t	o Select	ed Exercises	337
Indo	ex			355

About the Author

Dr. D. Sundararajan holds a B.E. in electrical engineering from Madras University and an M.Tech. in electrical engineering from the Indian Institute of Technology Madras (IIT Madras). He obtained his Ph.D. in electrical engineering from Concordia University, Montreal, Canada, in 1988. As the principal inventor of the latest family of discrete Fourier transform (DFT) algorithms, he holds three patents (granted by the USA, Canada, and Britain). Further, he has published several papers in IEEE Transactions and in the Proceedings of the IEEE, and he is the author of five books. He has taught undergraduate and graduate students in digital signal processing, digital image processing, engineering mathematics, programming, operating systems, and digital logic design at Concordia University, Canada; Nanyang Technological University, Singapore; and Adhiyamaan College of Engineering, India. He has also conducted workshops on digital image processing, MATLAB, and LaTeX.

Over the course of his engineering career, he has held positions at the National Aerospace Laboratory, Bangalore, and the National Physical Laboratory, New Delhi, where he worked on the design of digital and analog signal processing systems.

Abbreviations

1-D One-dimensional2-D Two-dimensional

DC Sinusoid with frequency zero, constant

DFT Discrete Fourier transform
DIF Decimation in frequency
DIT Decimation in time

DTFT Discrete-time Fourier transform

FIR Finite impulse response

FS Fourier series FT Fourier transform

IDFT Inverse discrete Fourier transform

IFT Inverse Fourier transform LSB Least significant bit LTI Linear time-invariant

PM Plus-minus

RDFT DFT of real-valued data

RIDFT IDFT of the transform of real-valued data