Skip to main content

Temporal-Spatial Feature Learning of Dynamic Contrast Enhanced-MR Images via 3D Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 875))

Abstract

Dynamic contrast-enhanced magnetic resonance imaging provide not only the information on the morphological features of the lesions, but also the changes of the lesion’s blood perfusion. In this paper, we propose a tensor-based temporal data representation (TTD) model and a multi-channel fusion 3D convolutional neural network (MCF-3D CNN) to extract the temporal and spatial features of dynamic contrast enhanced-MR images (DCE-MR images). To evaluate the performance of the proposed methods, we established a DCE-MR image dataset for non-invasively assessing the differentiation of Hepatocellular carcinoma (HCC). The TTD model achieves the accuracy of 73.96% for non-invasive assessment of HCC differentiation via MCF-3D CNN. Meanwhile, the 3D CNN with TTD achieves accuracy, sensitivity and specificity of 95.17%, 96.33%, and 94.00%, respectively, in discriminating the HCC and cirrhosis. Compared with the normal data representation method, the proposed TTD method is more conducive for 3D CNN to extract temporal-spatial features of DCE-MR images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  2. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  3. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR, abs/1703.06870 (2017)

    Google Scholar 

  4. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 221–231 (2013)

    Article  Google Scholar 

  5. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60 (2017)

    Article  Google Scholar 

  6. Dou, Q., et al.: Automatic detection of cerebral microbleeds from mr images via 3D convolutional neural networks. IEEE Trans. Med. Imaging 35, 1182–1195 (2016)

    Article  Google Scholar 

  7. Lemaître, G., Martí, R., Freixenet, J., Vilanova, J.C., Walker, P.M., Meriaudeau, F.: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Comput. Biol. Med. 60, 8 (2015)

    Article  Google Scholar 

  8. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61 (2017)

    Article  Google Scholar 

  9. Yang, J.D., Roberts, L.R.: Hepatocellular carcinoma: a global view. Nat. Rev. Gastroenterol. Hepatol. 7, 448 (2010)

    Article  Google Scholar 

  10. Sherman, M.: Hepatocellular carcinoma: screening and staging. Clin. Liver Dis. 15, 323–334 (2011)

    Article  Google Scholar 

  11. Regimbeau, J.M., et al.: Risk factors for early death due to recurrence after liver resection for hepatocellular carcinoma: Results of a multicenter study †. J. Surg. Oncol. 85, 36–41 (2004)

    Article  Google Scholar 

  12. Jiang, T., Zou, Y., Jie-Hua, X.U., Peng, L.R., Shan, H., Radiology, D.O.: Magnetic resonance imaging in predicting histopathological differentiation of hepatocellular carcinoma. J. Sun Yat-Sen Univ. Sci. 37, 903–911 (2016)

    Google Scholar 

  13. Fabijańska, A.: A novel approach for quantification of time-intensity curves in a DCE-MRI image series with an application to prostate cancer. Comput. Biol. Med. 73, 119–130 (2016)

    Article  Google Scholar 

  14. Li, J., Fan, M., Zhang, J., Li, L.: Discriminating between benign and malignant breast tumors using 3D convolutional neural network in dynamic contrast enhanced-MR images. In: SPIE Medical Imaging, p. 1013808 (2017)

    Google Scholar 

  15. Zhou, W., et al.: Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images. J. Magn. Reson. Imaging JMRI 45, 1476–1484 (2017)

    Article  Google Scholar 

  16. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436 (2015)

    Article  Google Scholar 

  17. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  18. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference for Learning Representations (2015)

    Google Scholar 

  19. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Chen, H., Yu, L., Dou, Q., Shi, L., Mok, V.C.T., Heng, P.A.: Automatic detection of cerebral microbleeds via deep learning based 3D feature representation. In: IEEE International Symposium on Biomedical Imaging, pp. 764–767 (2015)

    Google Scholar 

  21. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. CoRR, abs/1710.05381 (2017)

    Google Scholar 

  22. Shen, L., Lin, Z., Huang, Q.: Relay backpropagation for effective learning of deep convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 467–482. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_29

    Chapter  Google Scholar 

  23. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv: Distributed, Parallel, and Cluster Computing (2016)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by the grants from Beijing Natural Science Foundation (No.7184199), Capital’s Funds for Health Improvement and Research (No. 2018-2-2023), Research Foundation of Beijing Friendship Hospital, Capital Medical University (No. yyqdkt2017-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, X., Xiao, Y., Yang, D., Yang, Z., Wang, X., Liu, Y. (2018). Temporal-Spatial Feature Learning of Dynamic Contrast Enhanced-MR Images via 3D Convolutional Neural Networks. In: Wang, Y., Jiang, Z., Peng, Y. (eds) Image and Graphics Technologies and Applications. IGTA 2018. Communications in Computer and Information Science, vol 875. Springer, Singapore. https://doi.org/10.1007/978-981-13-1702-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1702-6_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1701-9

  • Online ISBN: 978-981-13-1702-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics