Skip to main content

The Competence of Volunteer Computing for MapReduce Big Data Applications

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 901))

Abstract

It is little to find off-the-shelf research results in the current literature about how competent Volunteer Computing (VC) performs big data applications. This paper explores whether VC scales for a large number of volunteers when they commit churn and how large VC needs to scale in order to achieve the same performance as that by High Performance Computing (HPC) or computing grid for a given big data problem. To achieve the goal, this paper proposes a unification model to support the construction of virtual big data problems, virtual HPC clusters, computing grids or VC overlays on the same platform. The model is able to compare the competence of those computing facilities in terms of speedup vs number of computing nodes or volunteers for solving a big data problem. The evaluation results have demonstrated that all the computing facilities scale for the big data problem, with a computing grid or a VC overlay being in need of more or much more computing nodes or volunteers to achieve the same speedup as that of a HPC cluster. This paper has confirmed that VC is competent for big data problems as long as a large number of volunteers is available from the Internet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: The Proceedings of 5th IEEE/ACM International Conference on Grid Computing, pp. 4–10 (2004)

    Google Scholar 

  2. ATLAS@home Project Status (2017). http://atlasathome.cern.ch/server_status.php

  3. Climateprediction.net (2016). http://www.climateprediction.net

  4. Costa, F., Silva, L., Dahlin, M.: Volunteer cloud computing: mapreduce over the internet. In: The Proceedings of IEEE International Symposium on Parallel and Distributed Processing Workshops and Ph.D Forum, pp. 1855–1862 (2011)

    Google Scholar 

  5. Costa, F., Silva, J.N., Veiga, L., Ferreira, P.: Large-scale volunteer computing over the internet. J. Internet Serv. Appl. 3(3), 329–346 (2012)

    Article  Google Scholar 

  6. Costa, F., Veiga, L., Ferreira, P.: Internet-scale support for map-reduce processing. J. Internet Serv. Appl. 4, 18 (2013)

    Article  Google Scholar 

  7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  8. Dinh, D.: Hadoop Performance Evaluation, Ruprecht-Karls Universitat Heidelberg (2009). https://wr.informatik.uni-hamburg.de/_media/research/labs/2009/2009-12-tien_duc_dinh-evaluierung_von_hadoop-report.pdf

  9. Donvito, G., Marzulli, G., Diacono, D.: Testing of several distributed file-systems (HDFS, Ceph and GlusterFS) for supporting the HEP experiments analysis. J. Phys. Conf. Ser. 513(4), 1–7 (2014)

    Article  Google Scholar 

  10. DrugDiscovery@Home (2017). http://www.drugdiscoveryathome.com/

  11. Fawkes Cluster (2017). https://www.usq.edu.au/research/support-development/development/eresearch/hpc/hardware

  12. FiND@Home (2017). http://findah.ucd.ie

  13. Fujin (2017). http://nci.org.au/systems-services/national-facility/peak-system/fujin/

  14. Hadoop (2014). https://wiki.apache.org/hadoop/ProjectDescription

  15. Isaac Newton Cluster (2017). https://my.cqu.edu.au/web/eresearch/hpc-systems

  16. Korpela, E.J.: SETI@home, BOINC, and volunteer distributed computing. Ann. Rev. Earth Planet. Sci. 40, 69–87 (2012)

    Article  Google Scholar 

  17. Lin, H., Ma, X., Archuleta, J., Feng, W.C., Gardner, M., Zhang, Z.: Moon: MapReduce on opportunistic environments. In: The Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, pp. 95–106 (2010)

    Google Scholar 

  18. Monsalve, S.A., Carballeira, F.G., Mateos, A.C.: Analyzing the performance of volunteer computing for data intensive applications. In: The Proceedings of International Conference on High Performance Computing and Simulation, pp. 597–604 (2016)

    Google Scholar 

  19. Alonso-Monsalve, S., García-Carballeira, F., Calderón, A.: A new volunteer computing model for data-intensive applications. Concur. Comput. Pract. Exp. 24, e4198 (2017)

    Article  Google Scholar 

  20. Australia National Broadband (2017). http://www.nbnco.com.au/learn-about-the-nbn/speed.html

  21. Oracle: An Enterprise Architect’s Guide to Big Data - Reference Architecture Overview, Oracle Enterprise Architecture White Paper (2016)

    Google Scholar 

  22. Raijin (2017). http://nci.org.au/systems-services/national-facility/peak-system/raijin/

  23. Ryden, M., Oh, K., Chandra, A., Weissman, J.: Nebula: distributed edge cloud for data intensive computing. In: The Proceedings of IEEE International Conference on Cloud Engineering, pp. 57–66 (2014)

    Google Scholar 

  24. Sarmenta, L.: Volunteer Computing, Ph.D thesis, Massachusetts Institute of Technology (2001)

    Google Scholar 

  25. SGI Altix XE Cluster (2017). http://www.itservices.qut.edu.au/researchteaching/hpc/hpc_infrastructure.jsp

  26. Stoica, I., et al.: Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)

    Article  MathSciNet  Google Scholar 

  27. Tang, B., Moca, M., Chevalier, S., He, H., Fedak, G.: Towards mapreduce for desktop grid computing. In: The Proceedings of International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 193–200 (2010)

    Google Scholar 

  28. TechPowerUp (2017). https://www.techpowerup.com/forums/threads/processor-gflops-compilation.94721/

  29. Top500 (2017). https://www.top500.org/lists/2017/11/

  30. Tinaroo (2017). https://rcc.uq.edu.au/tinaroo

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Guo, W. (2018). The Competence of Volunteer Computing for MapReduce Big Data Applications. In: Zhou, Q., Gan, Y., Jing, W., Song, X., Wang, Y., Lu, Z. (eds) Data Science. ICPCSEE 2018. Communications in Computer and Information Science, vol 901. Springer, Singapore. https://doi.org/10.1007/978-981-13-2203-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2203-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2202-0

  • Online ISBN: 978-981-13-2203-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics