Skip to main content

An Algorithm for Describing the Convex and Concave Shape of Protein Surface

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2018)

Abstract

Protein surface plays a key role in many biological processes. Most proteins participate in the life activities of cells via binding to other proteins or ligand molecules. It is an important work to study protein structure and function by analyzing the protein surface shape. Based on the CX algorithm and the 2D fngerprint-base method, we proposed a FCX method to identify the morphology of bulges and depressions on the protein surface. The experimental results show that the FCX algorithm has a more desirable outcome than CX algorithm. The FCX algorithm has a higher correlation with the convex and concave features than CX values with solvent accessibility, solvent accessibility, and B-factor’s Pearson correlation coefficient. This result shows that the FCX algorithm can describe the shape of the protein surface residues more accurately than the CX algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pandey, A., Mann, M.: Proteomics to study genes and genomes. Nature. 405(6788), 837–846 (2000)

    Article  Google Scholar 

  2. Fleming, K., Kelley, L.A., Islam, S.A., MacCallum, R.M., et al.: The proteome: structure, function and evolution. Philos. Trans. R. Soc. London. 361(1467), 441–451 (2006)

    Article  Google Scholar 

  3. Thul, P.J., Ã…kesson, L., Wiking, M., et al.: A subcellular map of the human proteome. Science. 356(6340) (2017)

    Google Scholar 

  4. Burley, S.K., Berman, H.M., Kleywegt, G.J., et al.: Protein Data Bank (PDB): the single global macromolecular structure archive. Methods Mol. Biol. 1607, 627 (2017)

    Article  Google Scholar 

  5. Biasini, M., Bienert, S., Waterhouse, A.: SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252 (2014)

    Article  Google Scholar 

  6. Jorgensen, W.L.: Rusting of the lock and key model for protein-ligand binding. Science 254(5034), 954 (1991)

    Article  Google Scholar 

  7. Morrison, J.L., Breitling, R., Higham, D.J., et al.: A lock-and-key model for protein-protein interactions. Bioinformatics 22(16), 2012 (2006)

    Article  Google Scholar 

  8. Mullard, A.: Protein-protein interaction inhibitors get into the groove. Nat. Rev. Drug Discov. 11(3), 173–5 (2012)

    Article  Google Scholar 

  9. Chen, L., Frankel, A.D.: A peptide interaction in the major groove of RNA resembles protein interactions in the minor groove of DNA. Proc. Nat. Acad. Sci. USA 92(11), 5077 (1995)

    Article  Google Scholar 

  10. Spola Jr., R.S.: Coupling of local folding to site-specific binding of proteins to DNA. Science 263(5148), 777–84 (1994)

    Article  Google Scholar 

  11. Wang, W., Liu, J., Sun, L.: Surface shapes and surrounding environment analysis of single- and double-stranded DNA-binding proteins in protein-DNA interface. Proteins 84(7), 979–989 (2016)

    Article  Google Scholar 

  12. Wang, W., Liu, J., Zhou, X.: Identification of single-stranded and double-stranded DNA binding proteins based on protein structure. BMC Bioinf. 15(S12), S4 (2014)

    Article  Google Scholar 

  13. Wang, W., Sun, L., Zhang, S., et al.: Analysis and prediction of single-stranded and double-stranded DNA binding proteins based on protein sequences. BMC Bioinf. 18(1), 300 (2017)

    Article  Google Scholar 

  14. Coleman, R.G., Burr, M.A., Souvaine, D.L., et al.: An intuitive approach to measuring protein surface curvature. Proteins 61(4), 1068–1074 (2005)

    Article  Google Scholar 

  15. Shazman, S., Elber, G., Mandel-Gutfreund, Y.: From face to interface recognition: a differential geometric approach to distinguish DNA from RNA binding surfaces. Nucleic Acids Res. 39(17), 7390–9 (2011)

    Article  Google Scholar 

  16. Iwakiri, J., Tateishi, H., Chakraborty, A., et al.: Dissecting the protein-RNA interface: the role of protein surface shapes and RNA secondary structures in protein-RNA recognition. Nucleic Acids Res. 40(8), 3299 (2012)

    Article  Google Scholar 

  17. Albou, L.P., Schwarz, B., Poch, O., et al.: Defining and characterizing protein surface using alpha shapes. Proteins 76(1), 1–12 (2009)

    Article  Google Scholar 

  18. Kraynov, V., Knudsen, N., Hays Putnam, A.M.A., et al.: Modified interferon beta polypeptides and their uses. US. 8329869 B2[P] (2012)

    Google Scholar 

  19. Xia, J.F., Zhao, X.M., Song, J., et al.: APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinf. 11(1), 174 (2010)

    Article  Google Scholar 

  20. Sikić, M., Tomić, S., Vlahovicek, K.: Prediction of protein-protein interaction sites in sequences and 3D structures by random forests. PLoS Comput. Biol. 5(1), e1000278 (2009)

    Article  Google Scholar 

  21. Wang, W., Liu, J., Sun, L.: Surface shapes and surrounding environment analysis of single-and double-stranded DNA-binding proteins in protein-DNA interface. Proteins 84(7), 979–989 (2016)

    Article  Google Scholar 

  22. Pintar, A., Carugo, O., Pongor, S.: CX, an algorithm that identifies protruding atoms in proteins. Bioinformatics 18(7), 980–984 (2002)

    Article  Google Scholar 

  23. Duan, J., Dixon, S.L., Lowrie, J.F., et al.: Analysis and comparison of 2D fingerprints: Insights into database screening performance using eight fingerprint methods. J. Mol. Graph. Model. 29(2), 157–170 (2010)

    Article  Google Scholar 

  24. Harinder, S., Singh, C.J., Michael, G.M., et al.: ccPDB: compilation and creation of data sets from Protein Data Bank. Nucleic Acids Res. 40, 486–9 (2012)

    Article  Google Scholar 

  25. Carter, P., Andersen, C.A., Rost, B.: DSSPcont: continuous secondary structure assignments for proteins. Nucleic Acids Res. 31(13), 3293–3295 (2003)

    Article  Google Scholar 

  26. Touw, W.G., Baakman, C., Black, J., et al.: A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 43, 364–8 (2015)

    Article  Google Scholar 

  27. Kim, H., Park, H.: Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor. Proteins 54(3), 557 (2004)

    Article  Google Scholar 

  28. Janin, J., Bahadur, R.P.: Relating macromolecular function and association: the structural basis of protein-DNA and RNA recognition. Cell. Mol. Bioeng. 1(4), 327–338 (2008)

    Article  Google Scholar 

  29. Yang, J., Wang, Y., Zhang, Y.: ResQ: an approach to unified estimation of B-factor and residue-specific error in protein structure prediction. J. Mol. Biol. 428(4), 693–701 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Henan province (182300410368,182300410130,182300410306), the Production and Learning Cooperation and Cooperative Education Project of Ministry of Education of China (201702115008), National Natural Science Foundation of China (No. 61772176, 61402153), the Science and Technology Research Key Project of Educational Department of Henan Province (No. 16A520016, 17B520002, 17B520036), Key Project of Science and Technology Department of Henan Province (No. 1821022 10208, 142102210056, 17B520002), Ph.D. Research Startup Foundation of Henan Normal University (Nos. qd15130, qd15132, qd15129), China Postdoctoral Science Foundation (No. 2016M602247), the Young Scholar Program of Henan Province (2017GGJS041), and the Key Scientific and Technological Project of Xinxiang City Of China (No. CXGG17002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, W. et al. (2018). An Algorithm for Describing the Convex and Concave Shape of Protein Surface. In: Zhou, Q., Miao, Q., Wang, H., Xie, W., Wang, Y., Lu, Z. (eds) Data Science. ICPCSEE 2018. Communications in Computer and Information Science, vol 902. Springer, Singapore. https://doi.org/10.1007/978-981-13-2206-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2206-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2205-1

  • Online ISBN: 978-981-13-2206-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics