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Abstract. Empty container repositioning has become one of the important
issues in ocean shipping industry. Researchers often solve these problems using
linear programming or simulation. For large-scale problems, heuristic algo-
rithms showed to be preferable due to their flexibility and scalability. In this
paper we consider large-scale the liner routing planning problem with empty
container repositioning (LRPECR) model where allocation strategies and liner
routes need to be designed to allocate empty containers from the supply ports to
the demand ports. According to the characteristics of the LRPECR model, we
combine the path of the ship to the algorithm encoding, set up the fitness
function that minimizes the total cost, and use a modified Particle Swarm
Optimization (PSO) algorithm to search for optimal shipping routes in a feasible
space iteratively. The modified PSO combines chaotic theory and Cat map to
overcome the defect of traditional PSO. In addition, we perform chaotic search
in different dimensions to enhance the search accuracy of the algorithm that
means the increased diversity of search scope. In order to validate our algorithm,
standard PSO and GA are chosen as the compared algorithms. Through
numerical studies based on real applications, the experimental results demon-
strate that the modified PSO is able to find preferable solutions efficiently for the
empty container repositioning problem.

Keywords: Empty container repositioning � Chaotic search
Particle swarm optimization � Cat map � Integer linear programming

1 Introduction

The liner routing problem (LRP) aims to establish a reasonable liner service shipping
network between several supply and demand ports. Considering the transportation cost,
risk and shipping capacity, shipping routes should be planned between ports. LRP is a
combinatorial optimization problem where the ocean carriers plan and deploy the liner
routes rationally to satisfy customer demands and to maximize profit.
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As an essential issue in contemporary LRP, the efficient and effective repositioning
of empty containers can significantly reduce the operation costs of shipping companies.
At the same time, it also has positive effect on environment protection and sustain-
ability [1, 2]. Shintani and Imai [3] solved the empty containers repositioning using a
Genetic Algorithm (GA) for the first time. Based on this, Sun [4] proposed a model for
empty container repositioning and solved it using hybrid genetic algorithm (HGA).

Particle Swarm Optimization (PSO) [5, 6] is one of the most widely-used evolu-
tionary algorithms. However, traditional PSO is prone to suffer from being trapped in
local optima, leading to premature convergence [7]. To overcome this defect, many
improvements have been proposed, including chaotic search, one of the powerful
hybrid algorithms. Chaotic searching algorithm was proposed first by Changkyu et al.
[8]. Liu et al. [9] developed an improved PSO combined with chaotic searching
algorithm. Tan et al. [10] found that the single-dimension chaotic search can evidently
improve the algorithm precision and the efficiency of the chaotic search. On the other
hand, Logistic map is frequently used for generating chaos sequence in the majority of
chaotic search algorithms. Based on the research in the field of image encryption [11],
Wang et al. [12] replaced the Logistic map with Cat map as the chaos sequence
generator. The superior properties of Cat map, which are excellent ergodicity and
sensitive dependence on initial conditions, were taken by Wang in chaotic search
algorithm. Cat map overcomes the disadvantages of Logistic map, including non-
uniformity and frequent loop.

Based on above mentioned researches, this paper proposes to solve the liner route
planning problem considering empty container repositioning (LRPECR) [4] using a
new modified PSO, which assimilated the experiences of chaotic search with Cat map
[12] and single-dimensional and multi-dimensional search [10]. We name it as Mod-
ified Mixed-dimension Chaotic Particle Swarm Optimization (MDCPSO). The opti-
mization result of MDCPSO are compared with those of standard PSO, GA and HGA.

The rest of the article is organized as follows. Section 2 provides a brief description
of MDCPSO. Section 3 presents the LRPECR model and problem descriptions. The
results and analysis of the experiments are shown and discussed in Sect. 4. Finally, the
concluding remarks are provided in Sect. 5.

2 Modified Mixed-Dimension Chaotic Particle Swarm
Optimization

2.1 Particle Swarm Optimization

PSO is a collection of intelligence optimization techniques. The system is initialized
with a set of random solutions called “particles”, which move through the search pace
to towards the optimal location by iterations. The search of PSO aims to strike a
balance between exploration and exploitation. For more detailed information, please
refer to [6].
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2.2 Modified Mixed-Dimension Chaotic Particle Swarm Optimization

The standard PSO and GA show to usually suffer from being trapped into local optima.
Inspired by the research by Tan and Wang [11, 12], the MDCPSO algorithm has been
developed to enhance the performance of the standard PSO. The operators of
MDCPSO include the chaotic search with cat map, and multi-dimension and single-
dimension chaotic search methods.

Two Key Mechanisms of MDCPSO. Before describing how MDCPSO solves the
LRPECR model, a brief introduction of two key mechanisms MDCPSO, namely the
chaotic search mechanism and multi-dimension and single-dimension chaotic search, is
given as follows.

Chaotic Search Mechanism with Cat Map. In order to improve the capability of PSO
to escape from the local optimum, the chaotic search is used for constructing the
algorithm. Logistic map is used in chaotic search frequently. It can map a number to a
set of 0 to 1. Through multiple iterations, the values mapped by Logistic equation will
traverse the whole set to achieve chaotic effect. Equation (1) shows the equation of
Logistic map. cx 0ð Þ is a chaotic variable generated by the global best particles in the
PSO system. And n represents the current chaotic iterations.

cxðnþ 1Þ ¼ 4cx nð Þð1� cx nð ÞÞ; 0\ cx 0ð Þ \ 1: ð1Þ

In this paper, the chaotic Cat map is used to replace the traditional chaotic Logistic
map. Compared with the Logistic map, Cat map as a chaos sequence generator shows
to enrich the chaotic search behavior, because it can traverse the whole set of 0 to 1
faster [12]. Equation (2) shows the computational formula of Cat map.

cxðnþ 1Þ ¼ ðcxðnÞ þ yðnÞÞmod1
yðnþ 1Þ ¼ ðcxðnÞ þ 2yðnÞÞmod1

�
; 0\ cx 0ð Þ \ 1; 0\ y 0ð Þ \ 1: ð2Þ

Here, mod is the modulus operator, and the result will be return to cxðnþ 1Þ � y 0ð Þ.
will be created randomly.

Multi-dimension and Single-Dimension Chaotic Search Method. Multi-dimension
chaotic search means to map the value of all dimensions by chaotic map function. The
existing chaos search method mainly use multi-dimensional chaotic search. However,
compared to multi-dimensional chaotic search, single-dimensional search can produce
a better search accuracy, because it only changes the value of one single dimension,
increasing diversity of search scope. Combining the two different mechanisms, we
propose a new method as follows.

Step 1: Initialize parameters of the chaotic system, with a random iteration number
yð0Þ yð0Þ 2 0; 1½ �� �

, iteration counter n ¼ 1, the maximum iteration number M of the
chaotic system, and a specified input solution xspec.

Modified Mixed-Dimension Chaotic Particle Swarm Optimization 3

A
u

th
o

r 
P

ro
o

f



Step 2: Mapping the specified solution xspec to a set between [0, 1] according
Eq. (3). xmax;i, xmin;i represent the maximum and minimum values for each
dimension of xspec, respectively. d is the maximum dimension of xspec.

cxð1Þi ¼ xspec;i � xmin;i

xmax;i � xmin;i
; i ¼ 1; 2; . . .; d ð3Þ

Step 3: Generate a chaotic sequence cxðnþ 1Þ by Cat map using Eq. (2).
Step 4: Generate a random number r, r is between [0, 1].
Step 5: If r\ 0:5, a multi-dimension chaotic local search is performed on cxðnÞ

according to Eq. (4). Here, c represents one of the solution sequences generated by
the chaotic search; a is the step length of the chaotic search. In this work, a is set to
a random integer number between [−2, 2].

cðnÞi ¼ a � cxðnþ 1Þ
i þ xspec;i; i ¼ 1; 2; . . .; d ð4Þ

Step 6: If r � 0:5, a single-dimension chaotic local search is performed on cxðnÞ

according to Eq. (5). What is different from Step 5 is that the single-dimension
search does not need to perform chaotic search on each dimension. It only needs to
randomly select one of the dimensions to perform the chaotic search.

cðnÞi ¼ a � cxðnþ 1Þ
i þ xspec;i; i ¼ randintð1; dÞ ð5Þ

Step 7: Set iteration counter as nþ 1. Go to Step 3 if n � M.
Step 8: Calculate fitness values of all solutions in c and store the best one.
Step 9: Replace xspec by the best solution in c if the fitness value of the best solution
in c is better than that of xspec, otherwise xspec will be maintained as the best
solution.
Step 10: Stop the chaotic search and output the best solution.

3 MDCPSO for Liner Route Planning

3.1 The LRPECR Model

In this paper the same LRPECR model proposed by Sun in [4] is considered. In the
LRPECR model, assignments of repositioning empty containers are required to the
known demand ports. The LRPECR problem aims to design liner routes considering
the satisfaction of empty containers which need to be transferred from the supply ports
to the demand ports. The objective of this model is to plan the liner route with the
minimized total cost. The problem is a mixed integer linear programming, and was
solved by Sun in [4] using a hybrid GA. The LRPECR model is presented in Eqs. (6–
12) and the variable definitions are shown in Table 1.

Mathematically, the objective is to minimize the total cost. The first item of the
objective function represents all the costs, including loading cost, unloading cost and
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the cost of shipping a container from port i to the known demand port. The second item
means the cost of renting containers in port i.

min z ¼
X
j2M

X
i2I

X
t2XTj

ððCTitj þCLij þCUijÞ � xEij þðCSj þCRjÞ � xRj Þ

Subject to:

xEij þ xRj ¼ DEj; 8i 2 I;8j 2 M ð6Þ
X
j2M

xEij � SNi; 8i 2 I ð7Þ

xEij ; x
R
j � 0; 8i 2 I; 8j 2 M ð8Þ

X
t2XTj

xitj � 1; 8i 2 I; 8j 2 M ð9Þ

Table 1. Parameters and definitions of LRPECR model

Variables Definitions

I The set of all container ports
M The set of all empty container demand ports
XTj The set of all alternative shipping liners to the demand port j, j 2 M

CLij The unit cost of loading an empty container from port i to demand port j,
i 2 I; j 2 M

CTitj The unit cost of repositioning an empty container from port i to demand port j
through the shipping liner t, i 2 I; j 2 M; t 2 XTj

CUij The unit cost of unloading an empty container from port i to demand port j,
i 2 I; j 2 M

CRj The unit cost of renting and loading an empty container in port j, j 2 M

CSj The unit cost of repositioning an empty container from the container renter to
port j, j 2 M

DEj The demand volume of empty container in demand port j, j 2 M

SNi The volume of available empty container in port i, i 2 I

Decision
variables

Definitions

xEij The volume of empty container repositioned from port i to demand port j,
i 2 I; j 2 M

xitj xitj ¼ 1 means that shipping liner t is chosen from XTj, and port i serves as the
starting port, i 2 I; j 2 M; t 2 XTj

xRj The volume of empty container rented from renter to port j, i 2 I; j 2 M
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X
t2XTj

xitj � SNi � xEij ; 8i 2 I; 8j 2 M ð10Þ

M � xEij �
X
t2XTj

xitj; 8i 2 I; 8j 2 M ð11Þ

xitj ¼ 0; 1f g; 8i 2 I; 8t 2 XTj; 8j 2 M ð12Þ

Equation (6) means that the volume of empty containers repositioned and rented at
a certain port should equals to the empty container demand. In Eq. (7) the repositioning
volume should be no more than the volume that the port can supply. Equation (8)
ensures that the volume of transportation should not be less than 0. Equation (9)
defines that there is only one shipping route for one assignment. According to
Eqs. (10–11), once the assignment between port i to port j is determined, the transfer
volume of empty containers between them must be more than 0, and the first M rep-
resents a sufficiently large number. Equation (12) restricts the value of xitj to be 0 or 1.

3.2 MDCPSO for LRPECR Model

Encoding. A new encoding strategy is developed considering the characteristic of the
LRPECR model. According to real problem data, a vessel will not berth at more than
four ports in one shipping mission, because of the high cost. It is better to adopt the
strategy of renting containers at the demand port. Therefore, a sequence of four
numbers is used to represent a liner route for one shipping mission. When there are m
shipping missions, a particle with 4� m dimensions is used.

As Fig. 1 shows, in shipping mission k, four positions represent the ports on this
route from the supply port to the demand port. The first position represents the demand
port, and the second position is for the linked port of the demand port, and so on. The
shipping route of mission k is thus port 1 ! port 9 ! port 4 ! port 6. If the number
of ports on the liner route is less than four (as shown in shipping mission kþ 1), the rest
of positions will be filled with 0. The shipping route of mission kþ 1 is port 2 ! port
8 ! port 7 in Fig. 1.

Fitness. The location of every particle is different in the search space. The fitness is
calculated according to Eq. (13). A greater fitness value means that the particle stays in
a better location in the search space, so it will be preserved and to be adapted by the
particles with a higher probability in the next iteration. Those particles with poor fitness
values will be improved or even eliminated. In this paper, the fitness equation is the
same as the objective function.

Fig. 1. An example for the encoding scheme for LRPECR
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fitness ¼
X
j2M

X
i2I

X
t2XTj

ðxitj � ðCTitj þCLij þCUijÞ � xEij þðCSij þCRijÞ � xRijÞ ð13Þ

Computational Steps of the MDCPSO Algorithm for LRPECR. Based on the
mechanisms described above, an improved PSO algorithm is designed for solving
LRPECR, and is implemented in MATLAB. The standard PSO and GA are chosen as
the compared algorithms. In order to make fair comparisons, all algorithms compared
use the same encoding, population sizes and iteration numbers. The length of encoding,
population size and iteration number L are all set to 200, 50 and 1000. In both PSO and
MDCPSO, learning factors C1 and C2 are set to 1.5. In GA, crossover rate Pc and
mutation rate Pm are set to 0.8 and 0.09. The pseudo-code of MDCPSO for LRPECR is
shown in Table 2.

4 Experimental Results and Analysis

4.1 Experimental Data

The characteristics of the numerical examples are set the same as those in the LRPECR
model in Sun [4]. Computational studies have been conducted on 5 instances. The total
number of ports and missions in Instance 1 is 28 and 50, respectively.

Figure 2 shows the distribution of the ports and empty container status for each port
in Instance 1. There are 28 ports distributed in this network. The number 0 means that
the port needs to be supplemented by transportation form supply ports or renting. In
Sun’s case study, it was found that the cost of adopting a full leasing strategy was lower

Table 2. The pseudo-code of MDCPSO

Begin
Initialize parameters;
Initialize a population of particles with random locations and velocities in a domain of feasible 
solution, and evaluate fitness value 

if for each particle according to Eq. (13);

Initialize 
gP with the best particle within the population;

Initialize 
iP with a copy of each particle’s location;

For ( 1:=l L ): 
Update velocities and locations for each particle;
Adjust the location for those particles beyond the boundary of the domain;
Evaluate the fitness 

if for all particles;

Update the 
gP and 

iP  ; 

Perform the mixed-dimension chaotic search on 
gP (see Section 2.2 Multi-dimension and 

Single-dimension Chaotic Search Method.); 
End
Output: the best solution for the LRPECR model
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than the cost obtained by their optimization. The original data has thus been adjusted
by increasing the cost of renting empty containers. There are 50 missions of assign-
ment, and the target port and other details of parameters are shown in Appendix. For all
instances 10 runs are conducted to obtain the average objective values and computation
times.

4.2 Results and Analysis

Figure 3 and Table 3 show the results of Instance 1. MDCPSO shows to outperform
GA and standard PSO. In the first 50 iterations, results from MDCPSO have exceeded
the other two. In Fig. 3 we can observe that the convergence speed of MDCPSO is

Fig. 2. Distribution and empty container status in Instance 1, Sun [4]

Fig. 3. Convergence of GA, PSO and MDCPSO for Instance 1
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much faster than GA and PSO. That means MDCPSO can find a better solution in a
short period of time. After 300 generations, both GA and PSO show to have converged,
however MDCPSO still maintains an improving trend towards better solutions.

Table 3. The average results for Instance 1

GA SPSO MDCPSO

Average fitness 7.9214e+06 8.0269e+06 7.0075e+06

Table 4. The optimized empty container allocation strategies based on MDCPSO of mission 1
to 16

Mission Route xEij xRj Mission Route xEij xRj
1 1-1 260 0 9 5-5 97 13
2 2-2 0 500 10 6-6 0 100
3 2-2 0 340 11 6-6 0 110
4 3-3 130 0 12 6-6 0 310
5 1-3 290 100 13 6-6 0 150
6 3-3 93 37 14 16-8-7 150 0
7 4-8-9-3 450 0 15 7-7 285 35
8 5-5 140 0 16 9-9 300 0

Table 5. The optimized empty container allocation strategies based on MDCPSO of mission 17
to 50

Mission Route xEij xRj Mission Route xEij xRj
17 9-9 152 238 34 20-20 170 0
18 9-9 0 260 35 20-20 60 0
19 12-12 230 0 36 17-15-21 380 0
20 12-12 180 0 37 17-14-15-21 110 0
21 13-13 90 0 38 17-15-21 172 8
22 12-13-24-13 230 0 39 20-22 170 0
23 4-8-16-14 56 44 40 28-22 285 215
24 13-25-14 36 254 41 23-23 288 190
25 12-16-14 140 50 42 23-23 0 190
26 13-25-14 75 195 43 23-23 0 170
27 15-15 0 200 44 24-24 90 0
28 15-15 0 120 45 24-24 81 129
29 15-15 0 80 46 25-25 281 149
30 15-15 0 330 47 25-25 0 150
31 17-17 140 0 48 26-26 0 230
32 17-17 0 100 49 27-27 177 193
33 18-18 0 110 50 20-22-27 52 158
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MDCPSO has been run 10 times in MATLAB, leading to the best solution of
$6,845,666, while the best result from HGA by Sun is $11,387,000 [4]. Note that the
renting cost of container has been raised based on Sun’s model. MDCPSO shows to
perform better than HGA in solving the RLPECR model. The detailed liner route plan
and strategies of the empty container allocation are shown in Tables 4 and 5.

In order to confirm the effectiveness of MDCPSO in different scale of RLPECR,
another four instances with different numbers of ports and assignments have been
tested. They respectively are Instance 2 (35 assignments in 25 ports), Instance 3 (65
assignments in 31 ports), Instance 4 (80 assignments in 34 ports) and Instance 5 (95
assignments in 37 ports).

Based on above experiment results in Figs. 4, 5, 6 and 7 and Table 6, we can
conclude that MDCPSO performs significantly better than PSO and GA in all instances.
In addition, the convergence of standard PSO has shown to be always inferior to GA.
When the mixed-dimension chaotic search with Cat map is integrated with PSO, the
improvement is significant. It proves the effectiveness of those mechanisms on PSO.

Fig. 4. Comparisons of algorithms for
Instance 2

Fig. 5. Comparisons of algorithms for
Instance 3

Fig. 6. Comparisons of algorithms for
Instance 4

Fig. 7. Comparisons of algorithms for
Instance 5
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5 Conclusions

This paper proposed an improved new particle swarm optimization (PSO) algorithm,
namely MDCPSO, for solving the liner routing planning problem with empty container
repositioning (LRPECR) model based on chaotic PSO. MDCPSO employs the pow-
erful search capability of the chaotic algorithm with Cat map and the superior searching
precision of the mixed-dimension search. In order to evaluate the effectiveness of
MDCPSO, two widely used algorithms, GA and PSO, are compared. The experimental
results show that the performance of MDCPSO is outstanding in solving LRPECR. In
the future, the key mechanisms of MDCPSO will be combined or integrated with other
heuristic algorithms for addressing the LRPECR model with extended constraints.
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