
Multinode Approach for Map Data Processing

Vı́t Ptošek, Kateřina Slaninová

IT4Innovations National Supercomputing Center,
VŠB - Technical University of Ostrava,

Czech Republic
(vit.ptosek@vsb.cz, katerina.slaninova@vsb.cz)

Abstract. OpenStreetMap (OSM) is a popular collaborative open source
project that offers free editable map across the whole world.

However, this data often needs a further on-purpose processing to become
utmost valuable information to work with. That is why the main motiva-
tion of this paper is to propose a design for big data processing along with
data mining leading to the obtaining of statistics with a focus on detail
of a traffic data as a result in order to create graphs representing a road
network. To ensure our High Performance Computing (HPC) platform
routing algorithms work correctly, it is absolutely essential to prepare
OSM data to be useful and applicable for above-mentioned graph, and
to store this persistent data in both spatial database and HDF5 format.

Keywords: OpenStreetMap, Road Network Quality, Big Data Parsing,
Multinode Processing, ETL, State Machine, Pipeline

1 Introduction

One of the biggest advantages of OSM[3] is such that everyone can contribute[13].
There is no doubt this factor has helped the project to be successful to the
possible extent[16]. Nevertheless, this feature tends to produce a lot of misleading
if not missing data. Our objective is to present an approach for processing such
a big spatial data to be of better quality.

The main motivation of this paper is encouraged by Antarex[1] project’s
second use case - a self-adaptive server-side navigation system to be used in
smart cities. Such a navigation system surely needs to be backed by a reliable
graph-like data for a static routing as well as derived information helping with
decisions and planning in a dynamic routing. The more data we are able to
process and benefit from, the better we can successfully reach this goal and
provide such a service. Our interest is to take advantage of large datasets, as
we aim to pay attention to detail on complete road network, which inevitably
brings big data-related tasks and touches usage of parallel algorithms.

This whole data-driven process is supposed to be easily configurable, reusable
and efficient. That has been achieved by two mutually communicating services
working as process chains as seen in Figure 1 below.

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

This is the post peer-review accepted manuscript of: PTOŠEK, Vít a Kate ina SLANINOVÁ. Multi-node approach
for map data processing. Springer, 2019. DOI: 10.1007/978-981-13-3250-0_7. ISSN 2194-5365.
The published version is available online at: https://link.springer.com/chapter/10.1007%2F978-981-13-3250-0_7
© Springer Nature Singapore Pte Ltd. 2019

Fig. 1. Processing design scheme

The first one is meant to obtain and decompress input raw data. Then we
need to filter out desired preprocessed output which from our point of view
makes sense to keep as an input for the very next process called parsing and
post-processing. In the following step, a job being part of a pipeline is enqueued
and kept track of. At this point, a chosen custom metrics are calculated, verified
and stored.

Having defined a criterion for a road map data assessment, we have to com-
plete graph with respect to information we need at the final stage of processing.
As a result, the network in question can serve for example the routing purposes
and traffic data overview.

The rest of the paper is organized as follows. The relevant work in Section 2.
Exploited data is described in Section 3 for better understanding of design clar-
ified in Section 4 and ETL1 logic in Sections 4.1, 4.2 and 4.3. Results and com-
parisons are explained in Section 5. Conclusions and future work are to be found
in Section 6.

1 Extract, transform, load process

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

2 Related Work

Some research has been done in field of assessing OSM data quality to show
how much trusted such can be[12]. There are couple of methods applicable.
Some of them use ground-truth data, determining semantic data quality by co-
occuring tags[10]. Another interesing approach rests on machine learning. In that
case, unlike ground-truth data, geometrical (lenght, linearity) and topological
(connectivity) characteristics based on segment collocation[14] are highlighted.

Either one proves that there really is inconsistency of tags. Also incorrect or
even missing keys (described further in Section 3.1) are to be found in original
OSM datasets. Looking into our samples, we can confirm that way elements may
have little or no information related to road network as well as they might be
suspiciously wrong. In spite of this fact, we have decided that there is strong
need to complete and normalize this data. Once this is done and validated,
we try to calculate the rest with maximal possible accuracy and minimal risk.
That being said we came with domain-specific rule sets to be applied. Those are
combined with our beforehand approved results that turned out to be correct
and reliable. We use semantics to detect related tags and its alternatives if such
exist. Geometrical characteristics like number of nodes can give us an idea of
road classification. Containing any value we normalize it (unit, type, access,
formatting, language), in the opposite we flag them as needing calculations and
do so by implication depending on known facts and our previous observations.

Another topic related to this paper introduces an idea of incremental process-
ing chain[11] using VGI2 data and Osmosis[4]. The described work flow finishes
initial processing of whole world OSM data (by then of size as Europe in present)
in 8 hours, whereas the update takes around 3 hours daily due to search opera-
tions. In our case a custom versioning was designed to avoid these computations.
Computing itself was desired to focus on high performance workload to be able
to complete several times a day for each country alone.

Finally, a similarly targeted publication discusses routing with OSM data and
dealing with its preprocessing [15] for shortest path both on-line and off-line using
different routing profiles. Albeit this paper offers a valuable contribution, our
intention is to only concentrate on server-side routing using computing power to
bring some extra navigation use-cases, like emergency or public service routing.
To speed routing on the data side, we can generate graph specialized for given
task to minimize unnecessary nodes to visit. This means we can process routing
graphs for bicycle and car navigation at the same time, each for different kind
of work, and decrease routing cost regardless algorithm for finding optimal path
used.

2 Volunteered Geographic Information

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

3 Data

The data to be processed are obtained from Geofabrik[2] download server and
contains OSM dataset under Open Database License 1.0. The raw data is or-
ganised by regions and refreshed on daily basis.

In spite of the fact that everybody can contribute and propagate map data to
the source being used, there is always room for inaccurate and flawed or obsolete
information we cannot afford to use. Another thing is duplicity or unnecessary
data. There have been some limitations experienced with downloading also.

Due to big amount and quality of above mentioned data, a reduction based on
custom settings and sanity check rules has to be made and applied. Detection of
missing or broken data is of high priority as some of them can be (re)calculated
for use of ours. On the other hand, the rest may be omitted or skipped and
discarded.

3.1 Input

Input data file is compressed in Protocolbuffer Binary Format (PBF)[7], which
is Google’s data interchange format. This data consists of following:

– Elements - the basic components
• Nodes - point on surface defined by latitude and longitude
• Ways - ordered list between nodes that defines polyline (roads in this

case)
• Relations - data structure documenting relation between elements

– Tags - key-value pair belonging to an data element representing its infor-
mation

3.2 Output

There are several outputs on the way to the final one. Both preprocessed and
parsed file are stored in binary formats for which PBF and HDF5[9] have been
found suitable. The final results are also stored in spatial database[6] as graph
of complete coverage of custom roads, segments and additional metrics and in-
formation.

We are only interested in roads that we calculated as accessible by car. For
such roads we gather information like whether it is one way, toll way or bridge,
what classification it belongs to, what is its maximal allowed speed, etc. For
every road we have 22 tags we are able to parse or calculate values for. We add
3 more custom tags for our use only that give us extra information for routing.

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

4 Design

The whole process scheme is divided into several parts (see Figure 2) and each
one of them solves separate set of tasks based on its order, type and logic. Two
main parts of a single whole are Preprocessing Tool (Section 4.1) and Parser
(Section 4.2). These are further consisting of sub-processes and sub-sections.
Our idea is to run described architecture as a remote service under various
parameters due to scalability as described in Section 5.1.

The solution as described had been implemented from scratch for both Win-
dows stack and Linux cluster deployment. At this point of a time it is optimized
on several levels and able to run on both platforms with the similar if not same
features like shut-down signal handling and shell commands execution, just to
name a few. The runtime environment comparison is to be seen in Section 5.2.

To fully exploit multi-node architecture, besides of a multi-thread, concur-
rent and parallel processes, certain changes have been made to provide with
optional dynamic load balancing between instances reflecting the cluster PBS[5]
job scripts where possible. Also some parts, like database import explained in
Section 4.3, can be run in the background.

Fig. 2. Multinode and parallelism role in scheme

4.1 Preprocessing

The very beginning of the data processing starts with loading settings for maps
and tags we are interested in. The behaviour of a run depends on switch options.
Preprocessing tool manages the queue and pipeline as a control element and it is
designed as a remote data-pump checking a state of a job. This means that every
map we want from download queue goes through an implemented chain starting
here and only picks the data we need to be saved. It looks after communication,
importing borders and new jobs to start on as well as can be seen in Figure 1.

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

State Machine Preprocessing tool is realized as a state machine (Figure 3)
which allows to run in loops based on a phase it is in. The benefit of this is that
we don’t need to restart process because of modifications made from the outside
as the whole run can be forced remotely on the fly due to the updated pipeline
it keeps track of.

Fig. 3. Processing represented as a state machine

Pipeline Every area being processed has its own separate pipeline in a queue
(see Table 1) saying what process is responsible for a certain planned task and
which one is following. There is a given order that has to be followed, although
different maps can be processed at the same time, only time-shifted.

The steps of a pipeline are matter of customization and serve to speed up
the process as the first map can be parsed meanwhile the second one is being
preprocessed for another parser.

source target task info country done

stored function preprocessing regular check <switch parameters> t
preprocessing preprocessing downloading map <map PBF file>-<size>MB <name> t
preprocessing preprocessing extracting <map PBF file> <name> t
preprocessing parsing parse pbf <storage path> <name> t
preprocessing preprocessing import <boundary file>>><db> <name> t
parsing osm2pgsql export country async <name> t
parsing stored procedure boundary cut staging-asynchronous <name> t
parsing stored procedure deploy to production production-synchronous <name> t
parsing stored procedure reprocess changes production-synchronous <name> t
preprocessing log exit <planned/unplanned> t
preprocessing log exit <cluster node>|<reason> t
parsing log exit <cluster node>|<reason> t

Table 1. Example of a pipeline queue

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

Planning and Reprocessing Since the pipeline queue is available for use,
it can be taken advantage of in the planning-ahead manner. It also serves its
purpose when it comes to abortion of a task, because the process(es) in charge
of a cancelled one can easily catch up again and continue from when it was.

Instead of going through the complete pipeline from the very beginning,
starting over and redoing what has been done already, a reprocessing point is
detected for a new start as illustrated in Figure 4.

Fig. 4. Logic of pipeline reprocessing when enabled

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

4.2 Parsing

Parsing instance always follows a leading Preprocessing one and does what it is
requested for and lets the Preprocessor know about the progress of a given task.
It reminds of master-slave approach based on ETL.

The objective of parsing is to take the data that hasn’t been ruled out (and
thus found needful) and to only keep nodes already belonging to the preprocessed
roads, which also helps with a compression. The ways are supposed to represent
road network for routing. The better information we have about the roads, the
more valuable the graph for navigation and visualization would be.

Some data can be extracted from datasets and cleaned afterwards, but most
of them can be missing or misleading, so Parser uses our pre-defined set of rules
to (re)calculate metrics and gather basic and additional information of a road
and then proceeds to managed indexing of way and node elements of a currently
processed country into the road network.

Given as example, that we know some road being currently processed is
situated somewhere in the Czech Republic and only comes with tags lanes:3,

oneway:yes. We can deduct missing classification tag which (now) would be
highway:motorway. Since we also know there is no restriction, we can lookup an
upper speed limit of a mentioned country for a specific type of highway, and thus
can also add maxspeed:130 and most likely toll:no, otherwise the toll would be
stated.

Parser can run under several settings and in one of two checking modes

1. Continual - on standby waiting for notification scheduling task
2. Periodical - self-scheduling future tasks and waiting for their time to come

Queueing As mentioned in Section 4.1, the continuous process leans on a
pipeline queue. That brings enqueuing and dequeuing logic into a question. It is
also a special case of a log.

In case of more than one instances, it is extremely important to ensure that
concurrent ones are not stealing jobs from each other. Not only it would be
ineffective to work on the same thing several times, but it could lead to a dam-
aged untrustworthy data. The same stands for the real opposite where some task
would not be picked by neither one of a running workers at all. For these cases
it is necessary to use locks, double-checking, and sometimes timers in a custom
specially designed structures for handling this.

Queueing, forcing start and stop as well as reprocessing and reloading pa-
rameters and settings can be done remotely via database commands and notifi-
cations.

Import Importing processed data is multi-thread asynchronous awaitable pro-
cess that carries out preparing and moving data into a staging spatial database.
Once this is done upon request from pipeline, everything is ready for the next
step completely being executed in a database which is a phase of preparing data
for a production.

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

4.3 Database Layer

Stating an obvious, a fair amount of work is done within a database layer be-
cause of geometry data type values stored in spatial structures. In our case, it
also brings advantages that stored procedures give to us. That is why it is so
important to pay attention to detail, especially when talking about indexing,
prepared statements, query optimization; last but not least, significant commu-
nications happen here.

Spatial Data It is not only crucial to have information about nodes and ways
as they go and are related to each other, but also to be able to represent them
in a graphical way - to visualise. For querying geometry data it is unnecessary
to support spatial database so we can link GPS point to a specific road, tell
whether some bridge overlaps any highway and many more.

Automatisation and Asynchronous Awaitable Functions In regards to
database stored procedures and spatial approach, the process running in the
DBMS combines both of them. When some country is successfully stored in
preliminary tables, there always are some roads crossing the neighbour country
border (Figure 6). The correct way is to only store the part belonging to a specific
country before generating the final graph for navigation routing, so those lines
are cut on a border line having the same node ID on both sides down to logically
linking them back together on a precisely measured spot.

This is however quite costly and there is no need for any application calling
this function to be blocked by waiting for a specific result. One way how this
is handled is that the stored functions call each other in a specified order. The
better one is that the first one called is run asynchronously in the pipeline and
the Parser gets back to it once the database gives the result. Meanwhile, it takes
another tasks form the queue available. We can manage to split whatever area
we desire in that manner and apply to divide-and-conquer technique.

Audit and Versioning Every task is logged on a specific level, but there is
one special case when we want to log custom changes so we can take them
into account for the next-time processing. The bright side of this takes place
in incremental reprocessing, history view, no redundancy and taking no risk in
overwriting changes with someone else’s as we prefer ours as long as they are up
to date.

When some change is propagated into the downloaded dataset we use, its
element version changes and so it is important to us to keep our changesets and
versions too. Every country table with the road network has its very own audit
table rolled out dynamically and thanks to that we can maintain the most recent
and actual versions and also recover from our backups.

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

5 Results

Data Processing Tool is used at least once a month automatically to mainly catch
up with major updates, data enrichment (Figure 5) and graph readjustment
(Figure 6). In spite of that, it can be run whenever needed.

(a) OSM Original with poor tagging (b) OSM Processed with extra information

Fig. 5. OSM road prior and after processing

Fig. 6. Graph split on border

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

5.1 Single-node versus Multi-node

It is only needed to have one instance of each part for complete processing in a
single mode, but our observations based on measurements showed us to launch
three Parsers for one Preprocessor when considering more than one instance. It
is very important to take into account the computational efficiency in case of
processing difference as well as time shifting - especially in tasks involving big
data as large maps are.

To keep all the parts fully utilized, a lightweight resolver has been imple-
mented so the download queue is split between all the active Preprocessors from
the map list. Every one of them then tells the first free Parser what to do regard-
less the node they run on as the pipeline is shared. This helped us to accelerated
by ≈ 55 % as seen in the Figure 7.

If the processing is found to be short on resources available, it is possible
to add up workers on the fly to finish sooner scaling both up and out without
interrupting the ongoing job.

(a) Sequential pipeline

(b) Parallel pipeline

Fig. 7. Pipeline speed-up

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

5.2 Runtime Environment Comparison

There are measured results representing duration of complete process imaged in
Figure 8. This process consists of scheduled sub-processes and tasks shown previ-
ously in Table 1. In this case a map of France has been chosen for benchmarking
as it is the largest available European dataset which makes it suitable because
bigger data to process helps us express diversity of taken execution time better
as the difference rise along. The binary file sizes of used map varying during the
processing lifetime along with count of nodes and vertices are exposed in the
Table 2.

By complete process we mean both preprocessing and parsing part, as seen in
Figure 1. In both cases, the given testing scenario used the same pipeline without
the interruption. Although the total duration almost equals, the time ratio of
these parts differs obviously. The first part is CPU-bound whilst the latter is
memory-bound. We also need to take into account an IO overhead and network
speed causing some divergences especially when talking about virtualization.

State of Dataset File PBF Size (∼GB) Edges/Vertices (∼mil))

Raw downloaded 3.65 5.4/379.2
Parsed roads 2.83 5.4/50.2
Extracted and processed graph 17.29 5.2/50.2
Indexed final graph 2.03 5.0/55.9

Table 2. Map set of France during processing

These results have been acquired on Salomon[8] supercomputer running single
computing node using 24 CPU cores and 128 GB of RAM with disabled Hyper-
threading. Data has been stored on a hard drive in the Lustre file system.

The aim of this experiment was to prove that the whole process is feasible to
run regardless to operation system. The tested tool provides repeatedly exactly
the same usable results in very comparable processing times and manner.

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

(a) Windows Server 2016 - KVM (b) Linux CentOS 6.8 - Mono

Fig. 8. Task execution time comparison - same dataset under different environments

These results were also correct in both cases and observations. This means that
it is possible to combine different parts on various platforms and run in parallel.

6 Conclusion and Future Work

As the volume growth of big data for smart cities rises along with its need, the
processing time increases also. The way of acquiring applicable information in
a feasible time must often be changed. This paper proposes our design for such
data processing resulting in an extensive road network routing graph.

The described big data processing itself is in a state that completes a whole
map of Europe nowadays. The time of total processing depends on many factors,
but under certain settings and adjustments we are confident of a job to be done
in two hours when countries processed simultaneously, with a full result.

We have successfully tested and proved our concept of navigation using this
data for the road network and found it working well. Not only it guarantees the
parsed road network is suitable for routing, it also shows that values provided
by us, like maximal allowed speed computed3 where not listed by OSM, can be
used for prioritizing some paths over another.

An advantage we take of chosen approach is that we can export to a different
file formats and vice versa. This is especially useful when it comes to querying,
visualising or editing, which is more comfortable via spatial database. On the
other hand routing algorithms run faster with use of HDF5 files.

As we can exploit described auditing and map editing4 into routing systems
for our own benefit, an automatic propagation to OSM database would be pos-
sible. This can also serve purposes for historical developmnet of road system.

3 for example based on road classification and number of lanes
4 that is forcing our changes locally; correcting road information from OSM dataset

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

Acknowledgement

This work has been partially funded by ANTAREX, a project supported by the
EU H2020 FET-HPC program under grant 671623, by The Ministry of Educa-
tion, Youth and Sports of the Czech Republic from the National Programme of
Sustainability (NPU II) project ’IT4Innovations excellence in science - LQ1602’.

References

1. AutoTuning and Adaptivity appRoach for Energy efficient eXascale HPC systems.
http://www.antarex-project.eu

2. Geofabrik. https://www.geofabrik.de
3. OpenStreetMap. https://www.openstreetmap.org
4. Osmosis. https://wiki.openstreetmap.org/wiki/Osmosis
5. Portable Batch System. https://www.nas.nasa.gov/hecc/support/kb/

portable-batch-system-(pbs)-overview_126.html

6. PostgreSQL. https://www.postgresql.org
7. Protocol Buffers. https://github.com/google/protobuf/
8. Supercomputer Salomon Hardware Overview. https://docs.it4i.cz/salomon/

hardware-overview/

9. The HDF Group. https://www.hdfgroup.org
10. Davidovic, N., Mooney, P.: Patterns of tagging in openstreetmap data in urban

areas. In: Proceedings of GISRUK (2016)
11. Goetz, M., Lauer, J., Auer, M.: An algorithm based methodology for the creation of

a regularly updated global online map derived from volunteered geographic infor-
mation. In: Proceedings of the Fourth International Conference on Advanced Geo-
graphic Information Systems, Applications, and Services, Valencia, Spain. vol. 30,
pp. 50–58 (2012)

12. Haklay, M.: How good is volunteered geographical information? a comparative
study of openstreetmap and ordnance survey datasets. Environment and planning
B: Planning and design 37(4), 682–703 (2010)

13. Haklay, M., Weber, P.: Openstreetmap: User-generated street maps. IEEE Perva-
sive Computing 7(4), 12–18 (2008)

14. Jilani, M., Corcoran, P., Bertolotto, M.: Automated highway tag assessment of
openstreetmap road networks. In: Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems. pp.
449–452. ACM (2014)

15. Luxen, D., Vetter, C.: Real-time routing with openstreetmap data. In: Proceedings
of the 19th ACM SIGSPATIAL international conference on advances in geographic
information systems. pp. 513–516. ACM (2011)

16. Neis, P., Zielstra, D.: Recent developments and future trends in volunteered ge-
ographic information research: The case of openstreetmap. Future Internet 6(1),
76–106 (2014)

DSpace VŠB - TUO http://hdl.handle.net/10084/133435 December 2018

