Skip to main content

Frequency Estimation by Two-Layered Iterative DFT with Re-Sampling Under Transient Condition

  • Conference paper
  • First Online:
  • 2137 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 516))

Abstract

Frequency deviation incurred by sudden changes of frequency introduces harmonics and inter-harmonics in the power system, which influences the accuracy of frequency estimation with the method of discrete Fourier transform (DFT). A two-layered iterative DFT (TLI-DFT) with re-sampling was presented to measure the frequency in non-steady states. A simple frequency estimation method named exponential sampling is amended to calculate the initial sampling frequency in the inner-layered process of the DFT iteration. TLI-DFT can track the frequency in non-steady states that is contaminated by decaying direct current offsets. Mean squared error of measured frequency and rate of change of frequency indicate that the proposed algorithm is valid and more accurate than the traditional one under a transient condition in the power system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Begovic MM, Djuric PM, Dunlap S, Phadke AG. Frequency tracking in power networks in the presence of harmonics. IEEE Trans Power Del. 1993;8(2):480–6.

    Article  Google Scholar 

  2. Nguyen CT, Srinivasan K. A new technique for rapid tracking of frequency deviation based on level crossings. IEEE Trans Power App Syst. 1984;103(8):2230–6.

    Article  Google Scholar 

  3. Sachdev MS, Giray MM. A least error squares technique for determining power system frequency. IEEE Trans. Power App Syst. 1985;104(2):437–444.

    Article  Google Scholar 

  4. Terzija VV, Djuric MB, Kovacevic BD. Voltage phasor and local system frequency estimation using Newton type algorithm. IEEE Trans Power Del. 1994;9(3):1368–74.

    Article  Google Scholar 

  5. Wood HC, Johnson NG, Sachdev MS (1985) Kalman filtering applied to power system measurements for relaying. IEEE Trans Power App Syst. 1985;104(12):3565–73.

    Google Scholar 

  6. Routray A, Pradhan AK, Rao KP. A novel Kalman filter for frequency estimation of distorted signals in power systems. IEEE Trans Instrum Meas. 2002;51(3):469–79.

    Article  Google Scholar 

  7. Siavashi EM, Afshania S, Bina MT, Zadeh MK, Baradar MR (2009) Frequency estimation of distorted signals in power systems using particle extended Kalman filter. In: 2nd international conference PEITS; 2019. p. 174–8.

    Google Scholar 

  8. Lobos T, Rezmer J. Real-time determination of power system frequency. IEEE Trans Instrum Meas. 1997;46(4):877–81.

    Article  Google Scholar 

  9. Vianello R, Prates MO, Duque CA, Cequeira AS, da Silveira PM, Ribeiro PE. New phasor estimator in the presence of harmonics, DC-offset and interharmonics. In: 14th ICHQP; 2010. p. 1–5.

    Google Scholar 

  10. Yang JZ, Liu CW A new family of measurement technique for tracking voltage phasor, local system frequency, harmonics and DC offset. In: IEEE PES summer meeting; 2010. p. 1327–32.

    Google Scholar 

  11. Zeng B, Teng ZS, Cai YL, Guo SY, Qing BY. Harmonic phasor analysis based on improved FFT algorithm. IEEE Trans Smart Grid. 2011;2(1):51–9.

    Article  Google Scholar 

  12. Karimi-Ghartemani M, Ooi B, Bakhshai A. Investigation of DFT-based phasor measurement algorithm. In: IEEE PES General Meeting; 2010. p. 1–6.

    Google Scholar 

  13. Phadke AG, Thorp JS, Adamiak MG (1983) A new measurement technique for tracking voltage phasor, local system frequency and rate of change of frequency. IEEE Trans Power App Syst. 1983;102(5):1025–38.

    Article  Google Scholar 

  14. Kay S. Simple frequency estimation via exponential samples. IEEE Signal Process Lett. 1994;1(5):73–5.

    Article  Google Scholar 

  15. Olkkonen H, Olkkonen JT. Log-time sampling of signals: Zeta transform. Open J Discrete Math. 2011;1(2):62–5.

    Article  MathSciNet  Google Scholar 

  16. Sadinezhad I, Agelidis VG. Extended staggered undersampling synchrophasor estimation technique for wide area measurement systems. In: IEEE PES ISGT; 2011. p. 1–7.

    Google Scholar 

  17. Rusu C, Kuosmanen P. Phase approximation by logarithmic sampling of gain. IEEE Trans Circuits Syst II Analog Digit Signal Process. 2003;50(2):93–101.

    Article  Google Scholar 

  18. Trittle S, Hamprecht FA. Near optimum sampling design and an efficient algorithm for single tone frequency estimation. Digit Signal Process. 2009;19(4):628–39.

    Article  Google Scholar 

  19. Yen CS. Phase-locked sampling instruments. IEEE Trans Instrum Meas. 1965;14(1/2):64–8.

    Article  Google Scholar 

  20. Karimi H, Karimi-Ghartemani M, Iravani MR. Estimation of frequency and its rate of change for applications in power systems. IEEE Trans Power Del. 2004;19(2):472–80.

    Article  Google Scholar 

  21. Elasmi-Ksibi R, Besbes H, Lopez-Valcarce R, Cherif S. Frequency estimation of real-valued single-tone in colored noise using multiple autocorrelation lags. Signal Process. 2010;90(7):2303–7.

    Article  Google Scholar 

  22. Stoica P, Moses RL, Soderstrom T, Li J. Optimal high-order Yule-Walker estimation of sinusoidal frequencies. IEEE Trans Signal Process. 1991;39(6):1360–8.

    Article  Google Scholar 

  23. Hart D, Novosel D, Hu Y, Smith B, Egolf M. A new frequency tracking and phasor estimation algorithm for generator protection. IEEE Trans Power Del. 1997;12(3):1064–73.

    Article  Google Scholar 

  24. Gomes S, Martins N, Stankovic A. Improved controller design using new dynamic phasor models of SVC’s suitable for high frequency analysis. In: IEEE PES transmission and distribution conference and exposition; 2006. p. 1436–44.

    Google Scholar 

  25. Benmouyal G. An adaptive sampling-interval generator for digital relaying. IEEE Trans Power Del. 1989;4(3):1602–9.

    Article  Google Scholar 

  26. Benmouyal G. Removal of DC-offset in current waveforms using digital mimic filtering. IEEE Trans Power Del. 1995;10(2):621–30.

    Article  Google Scholar 

  27. Yu CS. A discrete Fourier transform-based adaptive mimic phasor estimator for distance relaying applications. IEEE Trans Power Del. 2006;21(4):1839–46.

    Google Scholar 

  28. Girgis AA, Brown RG. Application of Kalman filtering in computer relaying. IEEE Trans. App. Syst. 1981;100(7): 3387–97.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Hainan Provincial Key R. & D. Projects of China (ZDYF2016010 and ZDYF2018012) and the National Natural Science Foundation of China (No. 61661018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Cao, J. (2020). Frequency Estimation by Two-Layered Iterative DFT with Re-Sampling Under Transient Condition. In: Liang, Q., Liu, X., Na, Z., Wang, W., Mu, J., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2018. Lecture Notes in Electrical Engineering, vol 516. Springer, Singapore. https://doi.org/10.1007/978-981-13-6504-1_77

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6504-1_77

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6503-4

  • Online ISBN: 978-981-13-6504-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics