Skip to main content

Retinal Blood Vessels Extraction of Challenging Images

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 996))

Abstract

Retinal fundus examination is necessary for the early diagnosis of eye disease, especially diabetic retinopathy. Population screening often results in poor quality retinal images that complicate the automated diagnosis of retinal features, such as precise segmentation of blood vessels, microaneurysms, cotton stains, and hard exudates. Fluorescein fundus angiogram (FFA) has solved some problems, but it is invasive and has side effects. In this research work, we proposed a method of image enhancement based on contrast-sensitive steps as a valuable aid for the automatic segmentation of pathological (unhealthy) images. Experimental results based on the Digital retinal images for vessel extraction (DRIVE) and STructured analysis of the retina (STARE) databases showed that the proposed image enhancement method improved the performance over other existing methods, from 92% to 95% in accuracy and from 71% to 75% in sensitivity. This significant improvement in the contrast of retinal background images of retinal color has the potential to provide better vessel images for observing ocular diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE Trans. Med. Imaging 28(9), 1488–1497 (2009)

    Article  Google Scholar 

  2. Cuadros, J., Martin, C.: Diabetic retinopathy screening practice guide. In: Yogesan, K., Goldschmidt, L., Cuadros, J. (eds.) Digital Teleretinal Screening, pp. 11–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25810-7_2

    Chapter  Google Scholar 

  3. Faust, O., Acharya, U.R., Ng, E.Y.K., Ng, K.H., Suri, J.S.: Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J. Med. Syst. 36(1), 145–157 (2012)

    Article  Google Scholar 

  4. Gilchrist, J.: Computer processing of ocular photographs-a review. Ophthalmic Physiol. Opt. 7, 379–386 (1987)

    Google Scholar 

  5. Gottschlich, C., Schonlieb, C.B.: Oriented diffusion filtering for enhancing low-quality fingerprint images. IET Biom. 1, 105–113 (2012)

    Article  Google Scholar 

  6. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)

    Article  Google Scholar 

  7. Lupaşcu, C.A., Tegolo, D., Trucco, E.: FABC: retinal vessel segmentation using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 14(5), 1267–1274 (2010)

    Article  Google Scholar 

  8. Martinez-Perez, M.E., Hughes, A.D., Thom, S.A.: Segmentation of blood vessels from red-free and fluorescein retinal images. J. Med. Image Anal. 11(1), 47–61 (2007)

    Article  Google Scholar 

  9. Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25, 1200–1213 (2006)

    Article  Google Scholar 

  10. Menotti, D., de Albuquerque Araújo, A., Pappa, G.L., Najman, L., Facon. J.: Contrast enhancement in digital imaging using histogram equalization. In: Computer Science Universite Paris Est Universidade federal de Minas Gerais (Bresil), vol. 1, pp. 1–10 (2008)

    Google Scholar 

  11. Nguyen, U.T., Bhuiyan, A., Park, L.A., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognit. 46, 703–715 (2013)

    Article  Google Scholar 

  12. Palomera-Perez, M.A., Martinez-Perez, M.E., Benitez-Perez, H., Ortega-Arjona, J.L.: Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans. Inf. Technol. Biomed. 14(2), 500–506 (2010)

    Article  Google Scholar 

  13. Shen, Y., Shu-zhen, C., Bing, Z.: An improved doublethreshold method based on gradient histogram. Wuhan Univ. J. Nat. Sci. 9(4), 473–476 (2004)

    Article  Google Scholar 

  14. Soares, J.V.B., Leandro, J.J.G., Cesar, R.M., Jelinek, J.H.F., Cree, M.J.: Retinal vessel segmentation using the 2D gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)

    Article  Google Scholar 

  15. Soomro, T.A., Khan, T.M., Khan, M.A.U., Gao, J., Paul, M., Zheng, L.: Impact of ICA-based image enhancement technique on retinal blood vessels segmentation. IEEE Access 6, 3524–3538 (2018)

    Article  Google Scholar 

  16. Soomro, T.A., Gao, J.: Non-invasive contrast normalisation and denosing technique for the retinal fundus image. Ann. Data Sci. 1, 1–15 (2016)

    Google Scholar 

  17. Soomro, T.A., Gao, J., Khan, M.A.U., Khan, T.M., Paul., M.: Role of image contrast enhancement technique for ophthalmologist as diagnostic tool for diabetic retinopathy. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8. November 2016. https://doi.org/10.1109/DICTA.2016.7797078

  18. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)

    Article  Google Scholar 

  19. You, X., Peng, Q., Yuan, Y., Cheung, Y.-M., Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit. 44, 10–11 (2011)

    Google Scholar 

  20. Yannuzzi, L.A., et al.: Fluorescein angiography complication survey. Ophthalmology 93(5), 611–617 (1986)

    Article  Google Scholar 

  21. Yin, X., Ng, B.W.H., He, J., Zhang, Y., Abbott, D.: Accurate image analysis of the retina using hessian matrix and binarisation of thresholded entropy with application of texture mapping. PLOS ONE 9(4), 1–17 (2014)

    Google Scholar 

  22. Zhao, Y., Rada, L., Chen, K., Harding, S.P., Zheng, Y.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 34(9), 1797–1807 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toufique Ahmed Soomro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soomro, T.A., Gao, J., Lihong, Z., Afifi, A.J., Soomro, S., Paul, M. (2019). Retinal Blood Vessels Extraction of Challenging Images. In: Islam, R., et al. Data Mining. AusDM 2018. Communications in Computer and Information Science, vol 996. Springer, Singapore. https://doi.org/10.1007/978-981-13-6661-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6661-1_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6660-4

  • Online ISBN: 978-981-13-6661-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics