Skip to main content

Computational Hermeneutics: An Integrated Approach for the Logical Analysis of Natural-Language Arguments

  • Conference paper
  • First Online:
Book cover Dynamics, Uncertainty and Reasoning (CLAR 2018)

Part of the book series: Logic in Asia: Studia Logica Library ((LIAA))

Included in the following conference series:

Abstract

We utilize higher order automated deduction technologies for the logical analysis of natural-language arguments. Our approach, termed computational hermeneutics, is grounded on recent progress in the area of automated theorem proving for classical and nonclassical higher order logics, and it integrates techniques from argumentation theory. It has been inspired by ideas in the philosophy of language, especially semantic holism and Donald Davidson’s radical interpretation; a systematic approach to interpretation that does justice to the inherent circularity of understanding: the whole is understood compositionally on the basis of its parts, while each part is understood only in the context of the whole (hermeneutic circle). Computational hermeneutics is a holistic, iterative approach where we evaluate the adequacy of some candidate formalization of a sentence by computing the logical validity of (i) the whole argument it appears in and (ii) the dialectic role the argument plays in some piece of discourse.

Christoph Benzmüller: Funded by VolkswagenStiftung under grant CRAP: Consistent Rational Argumentation in Politics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See e.g., the results reported in Benzmüller and Woltzenlogel Paleo (2014), Bentert et al. (2016), Benzmüller et al. (2017), Benzmüller and Woltzenlogel Paleo (2016a), Fuenmayor and Benzmüller (2018).

  2. 2.

    See e.g., the research derived from Montague’s universal grammar program (Montague 1974) and some of its followers like Discourse Representation Theory (e.g., Kamp et al. 2011) and Dynamic Predicate Logic (e.g., Groenendijk and Stokhof 1991).

  3. 3.

    The notion of reflective equilibrium has been initially proposed by Goodman (1983) as an account for the justification of the principles of (inductive) logic and has been popularized years later in political philosophy and ethics by Rawls (2009) for the justification of moral principles. In Rawls’ account, reflective equilibrium refers to a state of balance or coherence between a set of general principles and particular judgments (where the latter follow from the former). We arrive at such a state through a deliberative give-and-take process of mutual adjustment between principles and judgments. More recent methodical accounts of reflective equilibrium have been proposed as a justification condition for scientific theories (Elgin 1999) and objectual understanding (Baumberger and Brun 2016).

  4. 4.

    In much, the same spirit of Davidson’s theory of meaning Davidson (2001) and Quine’s holism of theory (dis-)confirmation (Quine 1976) in philosophy.

  5. 5.

    As described below, using the technique of semantical embeddings (Benzmüller and Paulson 2013) (cf. also Benzmüller 2019 and the references therein) allows us to work with several different nonclassical logics (modal, temporal, deontic, intuitionistic, etc.) while reusing existing higher order reasoning infrastructure.

  6. 6.

    The situation is obviously idealized, since as is well known, most of theorem-proving problems are computationally complex and even undecidable, so in many cases, a solution will take several minutes or just never be found. Nevertheless, as work in the emerging field of computational metaphysics (Fitelson and Zalta 2007; Rushby 2013; Benzmüller and Woltzenlogel Paleo 2014, 2016a; Benzmüller et al. 2017; Fuenmayor and Benzmüller 2017a) suggests, the lucky situation depicted above is not rare and will further improve in the future.

  7. 7.

    The assessment presented here draws on previous work in Fuenmayor and Benzmüller (2017a) and particularly the more recent, invited paper (Benzmüller and Fuenmayor 2018), which present an updated analysis of Gödel’s and Scott’s modal variants (Gödel 2004; Scott 2004) of the ontological argument and illustrate how our method is able to formalize, assess, and explain those in full detail.

  8. 8.

    See lines 4–5 in Fig. 4, where their definitions are provided for classical logic.

  9. 9.

    The full flexibility of our framework is not illustrated to its maximum in this paper due to space restrictions. For example, for intuitionistic logic we would simply integrate the respective embedding presented in earlier work Benzmüller and Paulson (2010) to model intuitionistic support/attack relations.

References

  • Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, summer, 2018th edn. Stanford University, Metaphysics Research Lab (2018)

    Google Scholar 

  • Arieli, O., Straßer, C.: Sequent-based logical argumentation. Argum. Comput. 6(1), 73–99 (2015)

    Article  Google Scholar 

  • Baumberger, C., Brun, G.: Dimensions of objectual understanding. In: Explaining Understanding. New Perspectives from Epistemology and Philosophy of Science, pp. 165–189 (2016)

    Google Scholar 

  • Baumgartner, M., Lampert, T.: Adequate formalization. Synthese 164(1), 93–115 (2008)

    Article  Google Scholar 

  • Bentert, M., Benzmüller, C., Streit, D., Woltzenlogel Paleo, B.: Analysis of an ontological proof proposed by Leibniz. In: Tandy, C. (ed.) Death and Anti-Death, Volume 14: Four Decades after Michael Polanyi, Three Centuries after G.W. Leibniz. Ria University Press (2016). https://philpapers.org/rec/TANDAA-10

  • Benzmüller, C.: Universal (meta-)logical reasoning: recent successes. Sci. Comput. Program. 172, 48–62 (2019). https://doi.org/10.1016/j.scico.2018.10.008, https://doi.org/10.13140/RG.2.2.11039.61609/2

  • Benzmüller, C., Brown, C., Kohlhase, M.: Higher-order semantics and extensionality. J. Symb. Logic 69(4), 1027–1088 (2004). https://doi.org/10.2178/jsl/1102022211, http://christoph-benzmueller.de/papers/J6.pdf

    Article  Google Scholar 

  • Benzmüller, C., Fuenmayor, D.: Can computers help to sharpen our understanding of ontological arguments? In: Gosh, S., Uppalari, R., Rao, K.V., Agarwal, V., Sharma, S. (eds.) Mathematics and Reality, Proceedings of the 11th All India Students’ Conference on Science & Spiritual Quest, 6–7 October 2018, IIT Bhubaneswar, Bhubaneswar, India. The Bhaktivedanta Institute, Kolkata. www.binstitute.org (2018). https://doi.org/10.13140/RG.2.2.31921.84323, http://christoph-benzmueller.de/papers/C74.pdf

  • Benzmüller, C., Paulson, L.: Multimodal and intuitionistic logics in simple type theory. Logic J. IGPL 18(6), 881–892 (2010). https://doi.org/10.1093/jigpal/jzp080, http://christoph-benzmueller.de/papers/J21.pdf

    Article  Google Scholar 

  • Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory. Logica Universalis (Special Issue on Multimodal Logics) 7(1), 7–20 (2013). https://doi.org/10.1007/s11787-012-0052-y, http://christoph-benzmueller.de/papers/J23.pdf

    Article  Google Scholar 

  • Benzmüller, C., Sultana, N., Paulson, L.C., Theiß, F.: The higher-order prover LEO-II. J. Autom. Reason. 55(4), 389–404 (2015). https://doi.org/10.1007/s10817-015-9348-y, http://christoph-benzmueller.de/papers/J30.pdf

    Article  Google Scholar 

  • Benzmüller, C., Weber, L., Woltzenlogel-Paleo, B.: Computer-assisted analysis of the Anderson-Hájek controversy. Logica Universalis 11(1), 139–151 (2017). https://doi.org/10.1007/s11787-017-0160-9, http://christoph-benzmueller.de/papers/J32.pdf

    Article  Google Scholar 

  • Benzmüller, C., Woltzenlogel Paleo, B.: Automating Gödel’s ontological proof of God’s existence with higher-order automated theorem provers. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Frontiers in Artificial Intelligence and Applications, ECAI 2014, vol. 263, pp. 93–98. IOS Press (2014). https://doi.org/10.3233/978-1-61499-419-0-93, http://christoph-benzmueller.de/papers/C40.pdf

  • Benzmüller, C., Woltzenlogel Paleo, B.: The inconsistency in Gödel’s ontological argument: a success story for AI in metaphysics. In: IJCAI 2016 (2016a). http://christoph-benzmueller.de/papers/C55.pdf

  • Benzmüller, C., Woltzenlogel Paleo, B.: An object-logic explanation for the inconsistency in Gödel’s ontological theory (extended abstract). In: Helmert, M., Wotawa, F. (eds.) Proceedings of Advances in Artificial Intelligence, KI 2016. LNCS, vol. 9725, pp. 43–50. Springer, Heidelberg (2016b). http://christoph-benzmueller.de/papers/C60.pdf

  • Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001)

    Article  Google Scholar 

  • Besnard, P., Hunter, A.: Argumentation based on classical logic. In: Argumentation in Artificial Intelligence, pp. 133–152. Springer, Boston (2009)

    Chapter  Google Scholar 

  • Blanchette, J., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Proceedings of ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  • Brun, G.: Die richtige Formel: Philosophische Probleme der logischen Formalisierung, vol. 2. Walter de Gruyter (2003)

    Google Scholar 

  • Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumentation frameworks. In: European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pp. 378–389. Springer, Heidelberg (2005)

    Google Scholar 

  • Cayrol, C., Lagasquie-Schiex, M.C.: Bipolar abstract argumentation systems. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 65–84. Springer, Boston (2009)

    Chapter  Google Scholar 

  • Davidson, D.: Radical interpretation interpreted. Philos. Perspect. 8, 121–128 (1994)

    Article  Google Scholar 

  • Davidson, D.: Essays on Actions and Events: Philosophical Essays, vol. 1. Oxford University Press on Demand, Oxford (2001)

    Google Scholar 

  • Davidson, D.: Inquiries into Truth and Interpretation: Philosophical Essays, vol. 2. Oxford University Press, Oxford (2001)

    Google Scholar 

  • Davidson, D.: Radical interpretation. In: Inquiries into Truth and Interpretation. Oxford University Press, Oxford (2001)

    Chapter  Google Scholar 

  • Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. intell. 77(2), 321–357 (1995)

    Article  Google Scholar 

  • Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Argumentation in Artificial Intelligence, pp. 199–218. Springer, Boston (2009)

    Chapter  Google Scholar 

  • van Eemeran, F.H., Grootendorst, R.: A Systematic Theory of Argumentation. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Elgin, C.: Considered Judgment. Princeton University Press, New Jersey (1999)

    Google Scholar 

  • Fitelson, B., Zalta, E.N.: Steps toward a computational metaphysics. J. Philos. Logic 36(2), 227–247 (2007)

    Article  Google Scholar 

  • Fuenmayor, D., Benzmüller, C.: Automating emendations of the ontological argument in intensional higher-order modal logic. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) Advances in Artificial Intelligence, KI 2017, vol. 10505, pp. 114–127. Springer, Cham (2017a)

    Chapter  Google Scholar 

  • Fuenmayor, D., Benzmüller, C.: Computer-assisted reconstruction and assessment of E. J. Lowe’s modal ontological argument. Archive of Formal Proofs (2017b). http://isa-afp.org/entries/Lowe_Ontological_Argument.html, Formal proof development

  • Fuenmayor, D., Benzmüller, C.: A case study on computational hermeneutics: E. J. Lowe’s modal ontological argument. IfCoLoG J. Logics Appl. (Special issue on Formal Approaches to the Ontological Argument) (2018). http://christoph-benzmueller.de/papers/J38.pdf

  • Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In: Eiter, T., Sands, D. (eds.) 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR-21 EPiC Series in Computing, vol. 46, pp. 14–30. EasyChair, Maun, Botswana (2017). https://doi.org/10.29007/jsb9, https://easychair.org/publications/paper/340346

  • Gödel, K.: Appx. A: Notes in Kurt Gödel’s Hand, pp. 144–145. In: [50] (2004). http://books.google.de/books?id=ZQh8QJOQdOQC

  • Goodman, N.: Fact, Fiction, and Forecast. Harvard University Press, Cambridge (1983)

    Google Scholar 

  • Groenendijk, J., Stokhof, M.: Dynamic predicate logic. Linguist. Philos. 14(1), 39–100 (1991)

    Article  Google Scholar 

  • Kamp, H., Van Genabith, J., Reyle, U.: Discourse representation theory. In: Handbook of Philosophical Logic, pp. 125–394. Springer, Dordrecht (2011)

    Google Scholar 

  • Lowe, E.J.: A modal version of the ontological argument. In: Moreland, J.P., Sweis, K.A., Meister, C.V. (eds.) Debating Christian Theism, Chap. 4, pp. 61–71. Oxford University Press (2013)

    Google Scholar 

  • Montague, R.: Formal Philosophy: Selected Papers of Richard Montague. Ed. and with an Introd. by Richmond H. Thomason. Yale University Press (1974)

    Google Scholar 

  • Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic. No. 2283 in LNCS. Springer, Heidelberg (2002)

    Google Scholar 

  • Oppy, G.: Gödelian ontological arguments. Analysis 56(4), 226–230 (1996)

    Article  Google Scholar 

  • Oppy, G.: Ontological Arguments and Belief in God. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  • Peregrin, J., Svoboda, V.: Criteria for logical formalization. Synthese 190(14), 2897–2924 (2013)

    Article  Google Scholar 

  • Peregrin, J., Svoboda, V.: Reflective Equilibrium and the Principles of Logical Analysis: Understanding the Laws of Logic. Routledge Studies in Contemporary Philosophy. Taylor and Francis (2017)

    Google Scholar 

  • Quine, W.V.O.: Two dogmas of empiricism. In: Can Theories be Refuted?, pp. 41–64. Springer, Dordrecht (1976)

    Google Scholar 

  • Quine, W.V.O.: Word and Object. MIT Press, New York (2013)

    Book  Google Scholar 

  • Rawls, J.: A Theory of Justice. Harvard University Press, Cambridge (2009)

    Google Scholar 

  • Rushby, J.: The ontological argument in PVS. In: Proceedings of CAV Workshop “Fun With Formal Methods”. St. Petersburg, Russia (2013)

    Google Scholar 

  • Scott, D.: Appx.B: Notes in Dana Scott’s Hand, pp. 145–146. In: [50] (2004). http://books.google.de/books?id=ZQh8QJOQdOQC

  • Sobel, J.: Logic and Theism: Arguments for and Against Beliefs in God. Cambridge University Press, New York (2004). http://books.google.de/books?id=ZQh8QJOQdOQC

  • Tarski, A.: The concept of truth in formalized languages. Logic Semant. Metamathematics 2, 152–278 (1956)

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable comments which helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fuenmayor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fuenmayor, D., Benzmüller, C. (2019). Computational Hermeneutics: An Integrated Approach for the Logical Analysis of Natural-Language Arguments. In: Liao, B., Ågotnes, T., Wang, Y. (eds) Dynamics, Uncertainty and Reasoning. CLAR 2018. Logic in Asia: Studia Logica Library. Springer, Singapore. https://doi.org/10.1007/978-981-13-7791-4_9

Download citation

Publish with us

Policies and ethics