Skip to main content

Scale Invariant Texture Representation Using Galois Field for Image Classification

  • Conference paper
  • First Online:
  • 654 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1035))

Abstract

This paper presents a Galois Field method to scale invariant representation of texture image. The method is based on addition of neighbours in Galois Field. Scale invariance is achieved by considering the neighbours at different levels. The texture is represented using the features extracted by transforming it into a Galois Field based addition. Then the normalized cumulative histogram (NCH) bin values are considered as textures. For scale invariance, features are extracted at different levels. Thus obtained features are used for scale invariant classification. The average classification accuracy of 80.77%, 91.74%, 98.52% and 74.08% is achieved for Mondial Marmi, Brodatz, Vectorial and Outex datasets at level 3. The features can be used for suitable applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  2. Bianconi, F., Fernández, A.: Rotation invariant co-occurrence features based on digital circles and discrete fourier transform. Pattern Recognition Letters 48, 34–41 (2014)

    Article  Google Scholar 

  3. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover Publications (1966)

    Google Scholar 

  4. Candemir, S., Borovikov, E., Santosh, K.C., Antani, S., Thoma, G.: RSILC: rotation-and scale-invariant, line-based color-aware descriptor. Image Vis. Comput. 42, 1–12 (2015)

    Article  Google Scholar 

  5. Crosier, M., Griffin, L.D.: Using basic image features for texture classification. Int. J. Comput. Vis. 88(3), 447–460 (2010)

    Article  MathSciNet  Google Scholar 

  6. Depeursinge, A., Foncubierta-Rodriguez, A., Van de Ville, D., Müller, H.: Rotation-covariant texture learning using steerable riesz wavelets. IEEE Trans. Image Process. 23(2), 898–908 (2014)

    Article  MathSciNet  Google Scholar 

  7. Gonzalez, R.C., Woods, R.E.: Image processing. Digit. Image Process. 2, 1 (2007)

    Google Scholar 

  8. Guo, Z., Wang, X., Zhou, J., You, J.: Robust texture image representation by scale selective local binary patterns. IEEE Trans. Image Process. 25(2), 687–699 (2016)

    Article  MathSciNet  Google Scholar 

  9. Harary, F.: Graph theory (1969)

    Google Scholar 

  10. Karargyris, A., et al.: Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays. Int. J. Comput. Assist. Radiol. Surg. 11(1), 99–106 (2016)

    Article  Google Scholar 

  11. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)

    Article  Google Scholar 

  12. Liu, L., Fieguth, P.: Texture classification from random features. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 574–586 (2012)

    Article  Google Scholar 

  13. Liu, L., Fieguth, P., Kuang, G., Zha, H.: Sorted random projections for robust texture classification. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 391–398. IEEE (2011)

    Google Scholar 

  14. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision 1999, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  15. Mondialmarmi database. http://dismac.dii.unipg.it/mm/ver_1_1/index.html

  16. Outex database. http://www.outex.oulu.fi/ (2002)

  17. Quan, Y., Xu, Y., Sun, Y.: A distinct and compact texture descriptor. Image Vis. Comput. 32(4), 250–259 (2014)

    Article  Google Scholar 

  18. Reed, I.S., Truong, T.K., Kwoh, Y.S., Hall, E.L.: Image processing by transforms over a finite field. IEEE Trans. Comput. C–26(9), 874–881 (1977)

    Article  Google Scholar 

  19. Roy, S.K., Bhattacharya, N., Chanda, B., Chaudhuri, B.B., Ghosh, D.K.: FWLBP: a scale invariant descriptor for texture classification. arXiv preprint arXiv:1801.03228 (2018)

  20. Santosh, K.C., Lamiroy, B., Wendling, L.: DTW-Radon-based shape descriptor for pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 27(03), 1350008 (2013)

    Article  MathSciNet  Google Scholar 

  21. Santosh, K.C., Wendling, L., Antani, S., Thoma, G.R.: Overlaid arrow detection for labeling regions of interest in biomedical images. IEEE Intell. Syst. 31(3), 66–75 (2016)

    Article  Google Scholar 

  22. Shivashankar, S., Kudari, M., Hiremath, P.S.: Texture representation using Galois field for rotation invariant classification. In: 2017 13th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), pp. 237–240. IEEE (2017)

    Google Scholar 

  23. Shivashankar, S., Kudari, M., Hiremath, P.S.: Galois field-based approach for rotation and scale invariant texture classification. Int. J. Image, Graph. Signal Process. (IJIGSP) 10(9), 56–64 (2018)

    Article  Google Scholar 

  24. Varma, M., Garg, R.: Locally invariant fractal features for statistical texture classification. In: IEEE 11th International Conference on Computer Vision 2007, ICCV 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  25. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62(1–2), 61–81 (2005)

    Article  Google Scholar 

  26. Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)

    Article  Google Scholar 

  27. Vectorial database (2012). http://all-free-download.com

  28. Xu, Y., Huang, S., Ji, H., Fermüller, C.: Scale-space texture description on sift-like textons. Comput. Vis. Image Underst. 116(9), 999–1013 (2012)

    Article  Google Scholar 

  29. Xu, Y., Ji, H., Fermüller, C.: Viewpoint invariant texture description using fractal analysis. Int. J. Comput. Vis. 83(1), 85–100 (2009)

    Article  Google Scholar 

  30. Yao, C.H., Chen, S.Y.: Retrieval of translated, rotated and scaled color textures. Pattern Recogn. 36(4), 913–929 (2003)

    Article  Google Scholar 

  31. Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vis. 73(2), 213–238 (2007)

    Article  Google Scholar 

  32. Zhang, J., Liang, J., Zhao, H.: Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans. Image Process. 22(1), 31–42 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medha Kudari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shivashankar, S., Kudari, M. (2019). Scale Invariant Texture Representation Using Galois Field for Image Classification. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1035. Springer, Singapore. https://doi.org/10.1007/978-981-13-9181-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9181-1_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9180-4

  • Online ISBN: 978-981-13-9181-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics