Skip to main content

Attention-Based GAN for Single Image Super-Resolution

  • Conference paper
  • First Online:
Image and Graphics Technologies and Applications (IGTA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1043))

Included in the following conference series:

Abstract

Single Image Super-Resolution task based on GANs has shown a great improvement in all methods, but still has the optimization problems of texture details and distortion of local regions in super-resolved images. In this paper, we proposed an attention-based GAN architecture to solve preceding problems. Specifically, we first implemented attention mechanism in both Generator and Discriminator. Secondly, we adopted a three-step training for all architecture models and adjusted the adoption frequency of attention implement to make pre-trained model perform better. Extensive experiments on Set5, Set14 and BSD100 showed that the better pre-trained model of ours not only remedied the distortion of local regions, but also achieved the better perceptual quality than the original architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  2. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: International Conference on Neural Information Processing Systems (2014)

    Google Scholar 

  3. Ledig, C., Theis, L., Huszar, F., et al.: Photo-realistic single image super-resolution using a generative adversarial network (2016)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., et al.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification (2015)

    Google Scholar 

  5. Blau, Y., Mechrez, R., Timofte, R., Michaeli, T., Zelnik-Manor, L.: The PIRM challenge on perceptual super resolution (2018). https://www.pirm2018.org/PIRM-SR.html

  6. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: CVPRW (2017)

    Google Scholar 

  7. Timofte, R., et al.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: CVPRW (2017)

    Google Scholar 

  8. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)

    Google Scholar 

  9. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  10. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 416–423 (2001)

    Google Scholar 

  11. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NIPS, pp. 6629–6640 (2017)

    Google Scholar 

  12. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning. JMLR.org (2015)

    Google Scholar 

  14. Mirza, M., Osindero, S.: Conditional generative adversarial nets. Computer Science, pp. 2672–2680 (2014)

    Google Scholar 

  15. Mao, X., Li, Q., Xie, H., et al.: Least squares generative adversarial networks (2016)

    Google Scholar 

  16. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017)

    Google Scholar 

  17. Gulrajani, I., Ahmed, F., Arjovsky, M., et al.: Improved training of Wasserstein GANs (2017)

    Google Scholar 

  18. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434 (2015)

    Google Scholar 

  19. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  20. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

  21. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. In: ICLR (2017)

    Google Scholar 

  22. Liu, M., Tuzel, O.: Coupled generative adversarial networks. In: NIPS (2016)

    Google Scholar 

  23. Sønderby, C.K., Caballero, J., Theis, L., Shi, W., Huszár, F.: Amortised map inference for image super-resolution. In: ICLR (2017)

    Google Scholar 

  24. Reed, S., Akata, Z., Mohan, S., Tenka, S., Schiele, B., Lee, H.: Learning what and where to draw. In: NIPS (2016)

    Google Scholar 

  25. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text-to-image synthesis. In: ICML (2016)

    Google Scholar 

  26. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017)

    Google Scholar 

  27. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018)

    Google Scholar 

  28. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)

    Google Scholar 

  29. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: CVPR (2017)

    Google Scholar 

  30. Zhang, H., Goodfellow, I., Metaxas, D., et al.: Self-attention generative adversarial networks (2018)

    Google Scholar 

  31. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). arXiv:1409.0473

  32. Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: DRAW: a recurrent neural network for image generation. In: ICML (2015)

    Google Scholar 

  33. Yang, Z., He, X., Gao, J., Deng, L., Smola, A.J.: Stacked attention networks for image question answering. In CVPR (2016)

    Google Scholar 

  34. Vaswani, A., et al.: Attention is all you need. arXiv:1706.03762 (2017)

  35. Xu, T., et al.: AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  36. Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: CVPR (2017)

    Google Scholar 

  37. Ma, C., Yang, C.Y., Yang, X., Yang, M.H.: Learning a no-reference quality metric for single-image super-resolution. CVIU 158, 1–16 (2017)

    Google Scholar 

  38. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Key Research and Development Plan under Grant No. 2016YFC0801005. This work is supported by Grant No. 2018JKF617.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huo, D., Wang, R., Ding, J. (2019). Attention-Based GAN for Single Image Super-Resolution. In: Wang, Y., Huang, Q., Peng, Y. (eds) Image and Graphics Technologies and Applications. IGTA 2019. Communications in Computer and Information Science, vol 1043. Springer, Singapore. https://doi.org/10.1007/978-981-13-9917-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9917-6_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9916-9

  • Online ISBN: 978-981-13-9917-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics