Skip to main content

Long-Tailed Contrastive Loss for Video-Based Person Re-identification

  • Conference paper
  • First Online:
Image and Graphics Technologies and Applications (IGTA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1043))

Included in the following conference series:

  • 1438 Accesses

Abstract

Contrastive loss based deep metric learning has been generally used in video-based person re-identification, which learns a metric by preserving the distance between positive sample pairs close and negative sample pairs far on the embedding space. Yet contrastive loss still suffers not only from “hard” negative examples loosely defined by a hard margin, but also from severe sampling imbalance caused by equal sampling technique. To address these defeats, this paper presents a novel loss called Long-Tailed Contrastive Loss (LTCL). A Gaussian kernel function is used as the negative loss term, which takes into account the effect of long-range negative sample pairs. Meanwhile, a focusing factor is introduced for adaptive hard negative data mining and a rebalancing factor is used to compensate the sampling imbalance. Experiments conducted on two classic datasets demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning a mahalanobis metric from equivalence constraints. J. Mach. Learn. Res. 6(6), 937–965 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Boulgouris, N.V., Hatzinakos, D., Plataniotis, K.N.: Gait recognition: a challenging signal processing technology for biometric identification. IEEE Sig. Process. Mag. 22(6), 78–90 (2005)

    Article  Google Scholar 

  3. Chung, D., Tahboub, K., Delp, E.J.: A two stream Siamese convolutional neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1983–1991 (2017)

    Google Scholar 

  4. Ding, S., Lin, L., Wang, G., Chao, H.: Deep feature learning with relative distance comparison for person re-identification. Pattern Recognit. 48(10), 2993–3003 (2015)

    Article  Google Scholar 

  5. Dong, S.C., Cristani, M., Stoppa, M., Bazzani, L., Murino, V.: Custom pictorial structures for re-identification, pp. 68.1–68.11 (2011)

    Google Scholar 

  6. Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: Computer Vision and Pattern Recognition, pp. 2360–2367 (2010)

    Google Scholar 

  7. Hadsell, R., Chopra, S., Lecun, Y.: Dimensionality reduction by learning an invariant mapping. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1735–1742 (2006)

    Google Scholar 

  8. Hirzer, M., Roth, P.M., Kstinger, M., Bischof, H.: Relaxed pairwise learned metric for person re-identification. In: European Conference on Computer Vision, pp. 780–793 (2012)

    Chapter  Google Scholar 

  9. Karaman, S., Bagdanov, A.D.: Identity inference: generalizing person re-identification scenarios. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 443–452. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33863-2_44

    Chapter  Google Scholar 

  10. Karanam, S., Li, Y., Radke, R.J.: Person re-identification with discriminatively trained viewpoint invariant dictionaries. In: IEEE International Conference on Computer Vision, pp. 4516–4524 (2015)

    Google Scholar 

  11. Klaser, A., Marszałek, M., Schmid, C.: A spatio-temporal descriptor based on 3D-gradients. In: 19th British Machine Vision Conference BMVC 2008, p. 275-1. British Machine Vision Association (2008)

    Google Scholar 

  12. Kviatkovsky, I., Adam, A., Rivlin, E.: Color invariants for person reidentification. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1622–34 (2013)

    Article  Google Scholar 

  13. Li, Y., Wu, Z., Karanam, S., Radke, R.J.: Multi-shot human re-identification using adaptive fisher discriminant analysis. In: British Machine Vision Conference, pp. 73.1–73.12 (2015)

    Google Scholar 

  14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollr, P.: Focal loss for dense object detection (2017)

    Google Scholar 

  15. Liu, K., Ma, B., Zhang, W., Huang, R.: A spatio-temporal appearance representation for video-based pedestrian re-identification. In: IEEE International Conference on Computer Vision, pp. 3810–3818 (2015)

    Google Scholar 

  16. Lowe, D.G.: Similarity metric learning for a variable-kernel classifier. Neural Comput. 7(1), 72–85 (1995)

    Article  MathSciNet  Google Scholar 

  17. Ma, B., Su, Y., Jurie, F.: Local descriptors encoded by fisher vectors for person re-identification. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 413–422. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33863-2_41

    Chapter  Google Scholar 

  18. Mclaughlin, N., Rincon, J.M.D., Miller, P.: Recurrent convolutional network for video-based person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1325–1334 (2016)

    Google Scholar 

  19. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Advances in Neural Information Processing Systems, pp. 1857–1865 (2016)

    Google Scholar 

  20. Wang, T., Gong, S., Zhu, X., Wang, S.: Person re-identification by video ranking. In: European Conference on Computer Vision, pp. 688–703 (2014)

    Chapter  Google Scholar 

  21. Wang, X., Doretto, G., Sebastian, T., Rittscher, J.: Shape and appearance context modeling. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  22. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10(1), 207–244 (2009)

    MATH  Google Scholar 

  23. Xu, S., Cheng, Y., Gu, K., Yang, Y., Chang, S., Zhou, P.: Jointly attentive spatial-temporal pooling networks for video-based person re-identification (2017)

    Google Scholar 

  24. Yan, Y., Ni, B., Song, Z., Ma, C., Yan, Y., Yang, X.: Person re-identification via recurrent feature aggregation. In: European Conference on Computer Vision, pp. 701–716 (2016)

    Chapter  Google Scholar 

  25. Yi, D., Lei, Z., Li, S.Z.: Deep metric learning for practical person re-identification, pp. 34–39. Computer Science (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Bao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bao, L. (2019). Long-Tailed Contrastive Loss for Video-Based Person Re-identification. In: Wang, Y., Huang, Q., Peng, Y. (eds) Image and Graphics Technologies and Applications. IGTA 2019. Communications in Computer and Information Science, vol 1043. Springer, Singapore. https://doi.org/10.1007/978-981-13-9917-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9917-6_51

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9916-9

  • Online ISBN: 978-981-13-9917-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics