Skip to main content

A Hybrid Covert Channel with Feedback over Mobile Networks

  • Conference paper
  • First Online:
Security and Privacy in Social Networks and Big Data (SocialSec 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1095))

  • 630 Accesses

Abstract

In the existing network covert channel research, the transmission of secret messages is one-way, lacking confirmation feedback on whether the secret message is successfully accepted. However, VoLTE has real-time interactive features, and the data packets between the sender and the receiver are transmitted in both directions, which facilitates the construction of a two-way covert channel with feedback. Therefore, we propose a hybrid covert channel over mobile networks, which includes a sender-to-receiver covert timing channel that modulates covert message through actively dropping packets during the silence periods and a reverse covert storage channel that hides the acceptance of the covert message as feedback information into the feedback control information field of the RTCP packet. The sender evaluates the current attack severity according to the feedback and adjusts the real-time parameters of the covert timing channel to weigh the robustness and other performance. Experimental results show that this solution can effectively feedback the transmission of the covert message while keeping undetectable and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–615 (1973)

    Article  Google Scholar 

  2. Department of Defense Trusted Computer System Evaluation Criteria, pp. 69–72. Palgrave Macmillan UK, London (1985)

    Google Scholar 

  3. Mazurczyk, W., Szczypiorski, K.: Evaluation of steganographic methods for oversized IP packets. Telecommun. Syst. 49(2), 207–217 (2012)

    Article  Google Scholar 

  4. Sadeghi, A.-R., Schulz, S., Varadharajan, V.: The silence of the LANs: efficient leakage resilience for IPsec VPNs. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 253–270. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-1_15

    Chapter  Google Scholar 

  5. Rios, R., Onieva, J.A., Lopez, J.: Covert communications through network configuration messages. Comput. Secur. 39(4), 34–46 (2013)

    Article  Google Scholar 

  6. Muchene, D.N., Luli, K., Shue, C.A.: Reporting insider threats via covert channels. In: 2013 IEEE Security and Privacy Workshops, pp. 68–71, May 2013

    Google Scholar 

  7. Do, Q., Martini, B., Choo, K.K.R.: Exfiltrating data from android devices. Comput. Secur. 48, 74–91 (2015)

    Article  Google Scholar 

  8. Wu, Z., Cao, H., Li, D.: An approach of steganography in G. 729 bitstream based on matrix coding and interleaving. Chin. J. Electron. 24(1), 157–165 (2015)

    Article  Google Scholar 

  9. Cabuk, S.: Network covert channels: design, analysis, detection, and elimination. Ph.D. thesis, Purdue University, West Lafayette, IN, USA (2006)

    Google Scholar 

  10. Houmansadr, A., Borisov, N.: CoCo: coding-based covert timing channels for network flows. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 314–328. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_22

    Chapter  Google Scholar 

  11. Tan, Y., Zhang, X., Sharif, K., Liang, C., Zhang, Q., Li, Y.: Covert timing channels for iot over mobile networks. IEEE Wirel. Commun. 25(6), 38–44 (2018)

    Article  Google Scholar 

  12. Tan, Y., Xinting, X., Liang, C., Zhang, X., Zhang, Q., Li, Y.: An end-to-end covert channel via packet dropout for mobile networks. Int. J. Distrib. Sens. Netw. 14(5), 1–14 (2018)

    Article  Google Scholar 

  13. Zhang, X., Liang, C., Zhang, Q., Li, Y., Zheng, J., Tan, Y.: Building covert timing channels by packet rearrangement over mobile networks. Inf. Sci. 445–446, 66–78 (2018)

    Article  MathSciNet  Google Scholar 

  14. Zhang, X., Tan, Y., Liang, C., Li, Y., Li, J.: A covert channel over VoLTE via adjusting silence periods. IEEE Access 6, 9292–9302 (2018)

    Article  Google Scholar 

  15. Zhang, X., Zhu, L., Wang, X., Zhang, C., Zhu, H., Tan, Y.: A packet-reordering covert channel over VoLTE voice and video traffics. J. Netw. Comput. Appl. 126, 29–38 (2019)

    Article  Google Scholar 

  16. Luo, X., Chan, E.W.W., Chang, R.K.C.: TCP covert timing channels: design and detection. In: 2008 IEEE International Conference on Dependable Systems and Networks with FTCS and DCC (DSN), pp. 420–429, June 2008

    Google Scholar 

  17. Wu, J., Wang, Y., Ding, L., Liao, X.: Improving performance of network covert timing channel through huffman coding. Math. Comput. Model. 55(1C2), 69–79 (2012)

    Article  MathSciNet  Google Scholar 

  18. Ahmadzadeh, S.A., Agnew, G.: Turbo covert channel: an iterative framework for covert communication over data networks. In: 2013 Proceedings IEEE INFOCOM, pp. 2031–2039, April 2013

    Google Scholar 

Download references

Acknowledgment

This work has been supported by the National Natural Science Foundation of China under grant No. U1636213 and No. 61876019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanxin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Guo, L., Xue, Y., Jiang, H., Liu, L., Zhang, Q. (2019). A Hybrid Covert Channel with Feedback over Mobile Networks. In: Meng, W., Furnell, S. (eds) Security and Privacy in Social Networks and Big Data. SocialSec 2019. Communications in Computer and Information Science, vol 1095. Springer, Singapore. https://doi.org/10.1007/978-981-15-0758-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0758-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0757-1

  • Online ISBN: 978-981-15-0758-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics