Skip to main content

Identification of Functional Modules in Dynamic Weighted PPI Networks by a Novel Clustering Algorithm

  • Conference paper
  • First Online:
  • 1383 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1122))

Abstract

The Density-Based Spatial Clustering of Application with Noise algorithm (DBSCAN) suffers the limitations of selecting global parameters and having the low accuracy in recognizing overlapping protein complexes. In order to overcome the disadvantage of slow convergence and being vulnerable to trap in local optima in Artificial Bee Colony algorithm (ABC), we designed a method with novel weights and distance calculated which is suitable for network topology and the interaction between proteins. Furthermore, a truncation-championship selection mechanism (TCSM) was proposed to avoid local optimum when onlooker bees search nectar source. Meanwhile, we present the adaptive step strategy (ASS) to improve the clustering speed in ABC algorithm. Finally, in order to overcome the shortcoming which is unable to identify protein complexes in the DBSCAN algorithm, a strategy is proposed to optimize the clustering result. The experimental results on superior precision and recall parameters demonstrate that our method has competitive performance for identifying protein complexes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ji, J., Zhang, A., Liu, C., et al.: Survey: functional module detection from protein-protein interaction networks. IEEE Trans. Knowl. Data Eng. 26(2), 261–277 (2014)

    Article  Google Scholar 

  2. Zhao, B., Wang, J., Li, M., et al.: A new method for predicting protein functions from dynamic weighted interactome networks. IEEE Trans. Nanobiosci. 15(2), 131–139 (2016)

    Article  Google Scholar 

  3. Bader, C., Hogue, C.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4(1), 2 (2003)

    Article  Google Scholar 

  4. Liu, G., Wong, L., Chua, H.N.: Complex discovery from weighted PPI networks. Bioinformatics 25(15), 1891–1897 (2009)

    Article  Google Scholar 

  5. Leung, H.C., Xiang, Q., Yiu, S.M., et al.: Predicting protein complexes from PPI data: a core-attachment approach. J. Comput. Biol. 16(2), 133–144 (2009)

    Article  MathSciNet  Google Scholar 

  6. Kessler, J., Andrushchenko, V., Kapitan, J., et al.: Insight into vibrational circular dichroism of proteins by density functional modeling. Phys. Chem. Chem. Phys. 20(7), 4926–4935 (2018)

    Article  Google Scholar 

  7. Ester, M., Kriegel, H.P., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  8. Ankerst, M., Breunig, M.M., Kriegel, H.P.: OPTICS: ordering points to identify the clustering structure. ACM Sigmod Rec. 28(2), 49–60 (1999)

    Article  Google Scholar 

  9. Lei, X., Wang, F., Wu, F.X., et al.: Protein complex identification through Markov clustering with firefly algorithm on dynamic protein–protein interaction networks. Inf. Sci. 329(6), 303–316 (2016)

    Article  Google Scholar 

  10. Lei, X., Ying, C., Wu, F.X., et al.: Clustering PPI data by combining FA and SHC method. BMC Genom. 16(S3), S3 (2015)

    Article  Google Scholar 

  11. Lei, X., Ding, Y., Wu, F.X.: Detecting protein complexes from DPINs by density based clustering with pigeon-inspired optimization algorithm. Sci. China Inf. Sci. 59(7), 070103 (2016)

    Article  Google Scholar 

  12. Singh, K., Sundar, S.: Artifical bee colony algorithm using problem-specific neighborhood strategies for the tree t-spanner problem. Appl. Soft Comput. 62, 110–118 (2018)

    Article  Google Scholar 

  13. Lei, X., Tian, J.: The information flow clustering model and algorithm based on the artificial bee colony mechanism of PPI network. Chin. J. Comput. 35(1), 134–145 (2012)

    Article  Google Scholar 

  14. Tian, J.F., Lei, X.J.: PPI network clustering based or artificial bee colony and breadth first traverse algorithm. PR&AI 25(3), 481–490 (2012)

    Google Scholar 

  15. Wu, S., Lei, X., Tian, J.: An improved bacteria foraging optimization algorithm based on intuition fuzzy set for clustering PPI network. In: The 3rd International Conference on Quantitative Logic and Soft Computing, Xi’an, vol. 5, pp. 362–369, 12–15 May 2012

    Google Scholar 

  16. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Amaya, A.F.F.: Protein Interaction Network. Springer, New York (2013)

    Google Scholar 

  18. Hu, S., Xiong, H., Zhao, B.: Construction of dynamic-weighted protein interactome network and its application. Acta Autom. Sinica. 41(11), 1893–1900 (2015)

    Google Scholar 

  19. Letovsky, S., Kasif, S.: Predicting protein function from protein-protein interaction data: a probabilistic approach. Bioinformatics 19(6), 197–204 (2003)

    Article  Google Scholar 

  20. Li, P.: Artificial plant optimization algorithm with different selection strategy. Taiyuan University of Science and Technology (2014)

    Google Scholar 

  21. Lei, X., Ding, Y., Fujita, H., et al.: Identification of dynamic protein complexes based on fruit fly optimization algorithm. Knowl. Based Syst. 105(C), 270–277 (2016)

    Article  Google Scholar 

  22. Wang, J., Peng, X., Li, M., et al.: Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics 13(2), 301–312 (2013)

    Article  Google Scholar 

  23. Bihai, Z., Jianxin, W., Min, L., et al.: Prediction of essential proteins based on overlapping essential modules. IEEE Trans. Nanobiosci. 13(4), 415–424 (2014)

    Article  Google Scholar 

  24. Tu, B.P., Mcknight, S.L.: Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310(5751), 1152–1158 (2005)

    Article  Google Scholar 

  25. Junzhong, J., Zhijun, L., Hongxin, L., et al.: An overview of research on functional module detection for protein-protein interaction networks. Acta Autom. Sinica 40(4), 577–593 (2014)

    Google Scholar 

  26. Bihai, Z., Jianxin, W., Min, L., et al.: Detecting protein complexes based on uncertain graph model. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(3), 486–497 (2014)

    Article  Google Scholar 

  27. Ester, M.: A density-based algorithm for discovering clusters in large spatial databases with noise, pp. 226–231 (1996)

    Google Scholar 

  28. Enright, A.J., Dongen, S.V., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30(7), 1575–1584 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mao, Y., Yu, X., Zhu, H. (2019). Identification of Functional Modules in Dynamic Weighted PPI Networks by a Novel Clustering Algorithm. In: Wang, G., El Saddik, A., Lai, X., Martinez Perez, G., Choo, KK. (eds) Smart City and Informatization. iSCI 2019. Communications in Computer and Information Science, vol 1122. Springer, Singapore. https://doi.org/10.1007/978-981-15-1301-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1301-5_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1300-8

  • Online ISBN: 978-981-15-1301-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics