Skip to main content

Higher-Order Network Structure Embedding in Supply Chain Partner Link Prediction

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1042))

Abstract

Enterprise partner link prediction is a research direction of the recommendation system, which is used to predict the possibility of links between nodes in the enterprise network, and recommend potential high-quality partners for enterprises. This paper is based on the automobile enterprise network, and study how to recommend high-quality parts suppliers for auto manufacturers, then propose a supply chain corporate partner link prediction algorithm embedding in higher-order network structure. The coupled rating matrix and triad tensor model is constructed by mining the higher-order link patterns in the enterprise network, and considering the interaction between user demand and automobile manufacturers, which explicitly reflects the auto manufacturer’s choice of its part suppliers. The model uses the Alternating Direction Multiplier Method (ADMM) to solve the problem, which effectively alleviates the data sparsity problem in the recommendation system. On real data crawled from automobile-related websites, experiments show that the algorithm can obtain more accurate link prediction effects than traditional algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sergey, N.D., Jose, F.M.: Evolution of networks. Adv. Phys. 51(4), 1079–1187 (2002)

    Article  Google Scholar 

  2. Linton, C.F.: Centered graphs and the structure of ego networks. Math. Soc. Sci. 3(3), 291–304 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tom, M., Anagha, J., Bruno, N., Yves, V.P.: Enrichment and aggregation of topological motifs are independent organizational principles of integrated interaction networks. Mol. BioSyst. 7(10), 2769–2778 (2011)

    Article  Google Scholar 

  4. Tore, O.: Triadic closure in two-mode networks: redefining the global and local clustering coefficients. Soc. Netw. 35(2), 159–167 (2013)

    Article  Google Scholar 

  5. Paul, W.H., Samuel, L.: A method for detecting structure in sociometric data. In: Social Networks, pp. 411–432. Elsevier (1977)

    Google Scholar 

  6. Dana, L.H.: Friendship networks and delinquency: the relative nature of peer delinquency. J. Quant. Criminol. 18(2), 99–134 (2002)

    Article  Google Scholar 

  7. Ranjay, G., Martin, G.: Where do interorganizational networks come from? Am. J. Sociol. 104(5), 1439–1493 (1999)

    Article  Google Scholar 

  8. Peter, K., Stefan, T.: Triadic closure dynamics drives scaling laws in social multiplex networks. New J. Phys. 15(6), 063008 (2013)

    Article  MathSciNet  Google Scholar 

  9. Hong, H., Yuxiao, D., Jie, T., Hongxia, Y., Nitesh, V.C., Xiaoming, F.: Will triadic closure strengthen ties in social networks? ACM Trans. Knowl. Discov. Data (TKDD) 12(3), 30 (2008)

    Google Scholar 

  10. Zhu, J., Hong, J., Hughes, J.G.: Using Markov chains for link prediction in adaptive web sites. In: Bustard, D., Liu, W., Sterritt, R. (eds.) Soft-Ware 2002. LNCS, vol. 2311, pp. 60–73. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46019-5_5

    Chapter  Google Scholar 

  11. Alexandrin, P., Lyle, H.U.: Statistical relational learning for link prediction. In: IJCAI Workshop on Learning Statistical Models from Relational Data, vol. 2003. Citeseer (2003)

    Google Scholar 

  12. Dekang, L.: An information-theoretic definition of similarity. In: ICML, vol. 98, pp. 296–304. Citeseer (1998)

    Google Scholar 

  13. Shi, X., Wang, L., Liu, S., Wang, Y., Pan, L., Wu, L.: Investigating microstructure patterns of enterprise network in perspective of ego network. In: Chen, L., Jensen, C.S., Shahabi, C., Yang, X., Lian, X. (eds.) APWeb-WAIM 2017. LNCS, vol. 10366, pp. 444–459. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63579-8_34

    Chapter  Google Scholar 

  14. Tiancheng, L., Jie, T., John, H., Zhanpeng, F., Xiaowen, D.: Learning to predict reciprocity and triadic closure in social networks. ACM Trans. Knowl. Discov. Data (TKDD) 7(2), 5 (2013)

    Google Scholar 

  15. Hong, H., Jie, T., Sen, W., Lu, L.: Mining triadic closure patterns in social networks. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 499–504. ACM (2014)

    Google Scholar 

  16. Paul, W.H., Samuel, L.: Transitivity in structural models of small groups. Comp. Group Stud. 2(2), 107–124 (1971)

    Article  Google Scholar 

  17. Brian, R.F., Frank, S., John, P.: The theory of triadic influence. Emerg. Theor. Health Promot. Pract. Res. 2, 451–510 (2009)

    Google Scholar 

  18. Miguel, A.V., Jeremy, E.C., Rodrigo, C.F., Jocelyn, C., Pierre, C.: Nonnegative tensor CP decomposition of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 54(5), 2577–2588 (2015)

    Google Scholar 

  19. Brett, W.B., Tamara, G.K.: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans. Math. Softw. (TOMS) 32(4), 635–653 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shuangzhe, L., Gõtz, T.: Hadamard, Khatri-Rao, Kronecker and other matrix products. Int. J. Inf. Syst. Sci. 4(1), 160–177 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Zhouchen, L., Minming, C., Yi, M.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055 (2010)

  22. Neil, D.L.: Gaussian process latent variable models for visualisation of high dimensional data. In: Advances in Neural Information Processing Systems, pp. 329–336 (2004)

    Google Scholar 

  23. Pierre, C.: Tensor decompositions. In: Mathematics in Signal Processing V, pp. 1–24 (2002)

    Google Scholar 

  24. Kumar, R., Verma, B.K., Rastogi, S.S.: Social popularity based SVD++ recommender system. Int. J. Comput. Appl. 87(14) (2014)

    Google Scholar 

  25. Purushotham, S., Liu, Y., Kuo, C.C.J.: Collaborative topic regression with social matrix factorization for recommendation systems. arXiv preprint arXiv:1206.4684 (2012)

Download references

Acknowledgements

This research work is supported by the National Key Research and Development Program (2018YFB1404501) and the Shandong Key Research and Development Program (2017CXGC0604, 2017CXGC0605, 2018GGX101019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, M., Wang, T., Jiang, Q., Pan, L., Liu, S. (2019). Higher-Order Network Structure Embedding in Supply Chain Partner Link Prediction. In: Sun, Y., Lu, T., Yu, Z., Fan, H., Gao, L. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2019. Communications in Computer and Information Science, vol 1042. Springer, Singapore. https://doi.org/10.1007/978-981-15-1377-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1377-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1376-3

  • Online ISBN: 978-981-15-1377-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics