Skip to main content

Tensor Super-Resolution with Generative Adversarial Nets: A Large Image Generation Approach

  • Conference paper
  • First Online:
Human Brain and Artificial Intelligence (HBAI 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1072))

Included in the following conference series:

Abstract

Deep generative models have been successfully applied to many applications. However, existing methods experience limitations when generating large images (the literature usually generates small images, e.g., \(32 \times 32\) or \(128 \times 128\)). In this paper, we propose a novel scheme using tensor super-resolution with adversarial generative nets (TSRGAN), to generate large high-quality images by exploring tensor structures. Essentially, the super resolution process of TSRGAN is based on tensor representation. First, we impose tensor structures for concise image representation, which is superior in capturing the pixel proximity information and the spatial patterns of elementary objects in images, over the vectorization preprocess in existing works. Secondly, we propose TSRGAN that integrates deep convolutional generative adversarial networks and tensor super-resolution in a cascading manner, to generate high-quality images from random distributions. More specifically, we design a tensor super-resolution process that consists of tensor dictionary learning and tensor coefficients learning. Finally, on three datasets, the proposed TSRGAN generates images with more realistic textures, compared with state-of-the-art adversarial autoencoders and super-resolution methods. The size of the generated images is increased by over 8.5 times, namely \(374\times 374\) in PASCAL2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  2. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1486–1494 (2015)

    Google Scholar 

  3. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  4. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  5. Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  6. Fei, J., Liu, X.-Y., Lu, H., Shen, R.: Efficient multi-dimensional tensor sparse coding using t-linear combinations. In: Association for the Advancement of Artificial Intelligence (2018)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  8. Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: Draw: a recurrent neural network for image generation. arXiv preprint arXiv:1502.04623 (2015)

  9. Gu, S., Sang, N., Ma, F.: Fast image super resolution via local regression. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR 2012), pp. 3128–3131. IEEE (2012)

    Google Scholar 

  10. Hao, N., Kilmer, M.E., Braman, K., Hoover, R.C.: Facial recognition using tensor-tensor decompositions. SIAM J. Imaging Sci. 6(1), 437–463 (2013)

    Article  MathSciNet  Google Scholar 

  11. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: International Conference on Learning Representations (2014)

    Google Scholar 

  13. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  14. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report. Citeseer (2009)

    Google Scholar 

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  16. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, vol. 2, p. 4 (2017)

    Google Scholar 

  17. Liu, X.-Y., Aeron, S., Aggarwal, V., Wang, X.: Low-tubal-rank tensor completion using alternating minimization. arXiv preprint arXiv:1610.01690 (2017)

  18. Liu, X.-Y., Aeron, S., Aggarwal, V., Wang, X., Wu, M.-Y.: Adaptive sampling of RF fingerprints for fine-grained indoor localization. IEEE Trans. Mob. Comput. 15(10), 2411–2423 (2015)

    Article  Google Scholar 

  19. Liu, X.-Y., Wang, X.: Fourth-order tensors with multidimensional discrete transforms. arXiv preprint arXiv:1705.01576 (2017)

  20. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. In: International Conference on Learning Representations (2016)

    Google Scholar 

  21. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

  22. Parikh, N., Boyd, S., et al.: Proximal algorithms. Found. Trends® Optim. 1(3), 127–239 (2014)

    Article  MathSciNet  Google Scholar 

  23. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  24. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  25. She, B., Wang, Y., Liang, J., Liu, Z., Song, C., Hu, G.: A data-driven avo inversion method via learned dictionaries and sparse representation. Geophysics 83(6), 1–91 (2018)

    Article  Google Scholar 

  26. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  28. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

  29. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  30. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: IEEE International Conference on Computer Vision, pp. 5907–5915 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihan Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, Z., Liu, XY., Yin, M., Kong, L. (2019). Tensor Super-Resolution with Generative Adversarial Nets: A Large Image Generation Approach. In: Zeng, A., Pan, D., Hao, T., Zhang, D., Shi, Y., Song, X. (eds) Human Brain and Artificial Intelligence. HBAI 2019. Communications in Computer and Information Science, vol 1072. Springer, Singapore. https://doi.org/10.1007/978-981-15-1398-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1398-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1397-8

  • Online ISBN: 978-981-15-1398-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics