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Preface

Human intelligence is the intellectual prowess of humans, which is marked by
four basic and important abilities: learning ability, cognition (acquiring and storing
knowledge) ability, generalization ability, and computation ability. Correspondingly,
artificial intelligence (AI) also consists of four basic and important methods:
machine learning (learning intelligence), neural network (cognitive intelligence),
support vector machines (generalization intelligence), and evolutionary computa-
tion (computational intelligence).

The development of Al is built on mathematics. For example, multivariant
calculus deals with the aspect of numerical optimization, which is the driving force
behind most machine learning algorithms. The main math applications in Al are
matrix algebra, optimization, and mathematical statistics, but the latter two are
usually described and applied in the form of matrix. Therefore, matrix algebra is
a vast mathematical tool of fundamental importance in most Al subjects.

The aim of this book is to provide the solid matrix algebra theory and methods
for four basic and important Al fields, including machine learning, neural networks,
support vector machines, and evolutionary computation.

Structure and Contents

The book consists of two parts.

Part I (Introduction to Matrix Algebra) provides fundamentals of matrix algebra
and contains Chaps. 1 through 5. Chapter 1 presents the basic operations and
performances of matrices, followed by a description of vectorization of matrix and
matricization of vector. Chapter 2 is devoted to matrix differential as an important
and effective tool in gradient computation and optimization. Chapter 3 is concerned
with convex optimization theory and methods by focusing on gradient/subgradient
methods in smooth and nonsmooth convex optimizations, and constrained convex
optimization. Chapter 4 describes singular value decomposition (SVD) together
with Tikhonov regularization and total least squares for solving over-determined
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matrix equations, followed by the Lasso and LARS methods for solving under-
determined matrix equations. Chapter 5 is devoted to the eigenvalue decomposition
(EVD), the generalized eigenvalue decomposition, the Rayleigh quotient, and the
generalized Rayleigh quotient.

Part IT (Artificial Intelligence) focuses on machine learning, neural networks,
support vector machines (SVMs), and evolutionary computation from the perspec-
tive of matrix algebra. This part is the main body of the book and consists of the
following four chapters.

Chapter 6 (Machine Learning) presents first the basic theory and methods
in machine learning including single-objective optimization, feature selection,
principal component analysis and canonical correlation analysis together with
supervised, unsupervised, and semi-supervised learning and active learning. Then,
this chapter highlights topics and advances in machine learning: graph machine
learning, reinforcement learning, Q-learning, and transfer learning.

Chapter 7 (Neural Networks) describes optimization problem, activation func-
tions, and basic neural networks. The core part of this chapter are topics and
advances in neural networks: convolutional neural networks (CNNs), dropout learn-
ing, autoencoders, extreme learning machine (ELM), graph embedding, network
embedding, graph neural networks (GNNs), batch normalization networks, and
generative adversarial networks (GANS).

Chapter 8 (Support Vector Machines) discusses the support vector machine
regression and classification, and the relevance vector machine.

Chapter 9 (Evolutionary Computation) is concerned primarily with multiob-
jective optimization, multiobjective simulated annealing, multiobjective genetic
algorithms, multiobjective evolutionary algorithms, evolutionary programming,
differential evolution together with ant colony optimization, artificial bee colony
algorithms, and particle swarm optimization. In particular, this chapter highlights
also topics and advances in evolutionary computation: Pareto optimization theory,
noisy multiobjective optimization, and opposition-based evolutionary computation.

Part I uses some revised content and materials from my book Matrix Analysis
and Applications (Cambridge University Press, 2017), but there are considerable
differences in content and book objective. This book is concentrated on the
applications of the matrix algebra approaches in Al in Part II (561 pages of text),
compared to Part I which is only 205 pages of text. This book is also related to
my previous book Linear Algebra in Signal Processing (in Chinese, Science Press,
Beijing, 1997; Japanese translation, Morikita Press, Tokyo, 2008) in some ideas.

Features and Contributions

e The first book on matrix algebra methods and applications in artificial intelli-
gence.

¢ Introduces the machine learning tree, the neural network tree, and the evolution-
ary tree.
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e Presents the solid matrix algebra theory and methods for four core Al areas:
Machine Learning, Neural Networks, Support Vector Machines, and Evolution-
ary Computation.

* Highlights selected topics and advances of machine learning, neural networks,
and evolutionary computation.

e Summarizes about 80 Al algorithms so that readers can further understand and
implement Al methods.

Audience

This book is widely suitable for scientists, engineers, and graduate students in many
disciplines, including but not limited to artificial intelligence, computer science,
mathematics, engineering, etc.
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