Skip to main content

A Rectified Linear Unit Model for Diagnosing VCSEL’s Power Output

  • Conference paper
  • First Online:
  • 1121 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1179))

Abstract

Vertical cavity surface emitting lasers (VCSELs) are broadly applied in optical communication, optical interconnection, optical information processing, and optical integrated system. Therefore, diagnosing the output power of VCSEL is of great importance from the point of application view. Traditional approaches to diagnose the output power are by the rate equation, which is easily interfered by zero-value samples. Such model is capable of capturing the relationship between the laser output power intensity and the device temperature. However, those methods may over-fitting and fall into local optimum in the fitting process. In this paper, we propose an advanced model to address these limitations. Specifically, our model adds Rectified Linear Unit (ReLU) and weight parameters to reduce the zero-value interference. Moreover, the adaptive moment estimation (Adam) algorithm is employed to learn parameters in the model, and the L2-norm is taken into consideration to prevent overfitting. The experimental results show that proposed model outperforms the base model significantly, and can be used for diagnosing VCSEL’s power output. The mean squared error (MSE) of our model is 0.0815. The Mean Absolute Percentage Error (MAPE) is 20.72%, which is 22.29% lower than the base model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nakwaski, W., et al.: Self-consistent thermal-electrical modeling of proton-implanted top-surface emitting semiconductor lasers. In: OE/LASE 1994 International Society for Optics and Photonics, pp. 365–387 (1994)

    Google Scholar 

  2. Michalzik, R., Ebeling, K.J.: Modeling and design of proton-implanted ultralow-threshold vertical-cavity laser diodes. IEEE J. Quantum Electron. 29(6), 1963–1974 (1993)

    Article  Google Scholar 

  3. Nakwaski, W.: Thermal aspects of efficient operation of vertical-cavity surface-emitting lasers. Opt. Quantum Electron. 28(4), 335–352 (1996)

    Article  Google Scholar 

  4. Osinski, M., et al.: Thermal effects in vertical-cavity surface-emitting lasers. Int. J. High Speed Electron. Syst. 05(04), 667–730 (1994)

    Article  Google Scholar 

  5. Cartledge, J.C.: DFB laser rate equation parameters-for system simulation purposes. J. Lightwave Technol. 15(5), 852–860 (1997)

    Google Scholar 

  6. Ramunno, L., Sipe, J.E.: Dynamical model of directly modulated semiconductor laser diodes. IEEE J. Quanturn Electron. 35(4), 624–634 (1999)

    Article  Google Scholar 

  7. Luo, Y., Sun, C.Z., et al.: Analysis of gain and index coupling coefficients of DFB semiconductor lasers using a practical model. Int. J. Optoelectron. 10(5), 331–335 (1995)

    Google Scholar 

  8. Jakobsen, K.B., et al.: FM modulation response model of direct modulated buried heterostructure semiconductor lasters. Opt. Commun. 82(5–6), 456–460 (1991)

    Google Scholar 

  9. Tucker, R.S.: High-speed modulation of semiconductor laser. J. Lightwave Technol. 3(7), 1180–1192 (1985)

    Article  Google Scholar 

  10. Yu, S.F., et al.: Theoretical analysis of modulation response and second—order harmonic distortion in vertical cavity surface—emitting lasers. IEEE J. Quantum Electron. 32, 2139–2147 (1996)

    Article  Google Scholar 

  11. Entezam, S., et al.: Thermal equivalent circuit model for coupled-cavity surface-emitting lasers. IEEE J. Quantum Electron. 51(4), 2400108 (2015)

    Article  Google Scholar 

  12. Hangauer, A., et al.: Vertical-cavity surface-emitting laser light-current characteristic at constant internal temperature. IEEE Photonics Technol. Lett. 23(18), 1295–1297 (2011)

    Article  Google Scholar 

  13. Morozov, V.N., et al.: Analysis of vertical-cavity surface—emitting laser multimode behavior. IEEE J. Quantum Electron. 01, 980–988 (1997)

    Article  Google Scholar 

  14. Su, Y., et al.: Circuit model for studying temperature effects on vertical-cavity surface—emitting laser. In: Proceedings of IEEE LEOS (Lasers and Electro—Optics Society) Annual Meeting, vol. 01, pp. 215–216 (1996)

    Google Scholar 

  15. Wipiejewski, T., et al.: Size-dependent output power saturation of vertical-cavity surface-emitting laser diodes. IEEE Photonics Technol. Lett. 8(1), 10–12 (1996)

    Article  Google Scholar 

  16. Mena, P.V., et al.: A simple rate-equation-based thermal VCSEL model. J. Lightwave Technol. 17(5), 865–872 (1999)

    Article  Google Scholar 

  17. Mena, P.V., et al.: A comprehensive circuit-level model of vertical-cavity surface-emitting lasers. J. Lightwave Technol. 17(12), 2612–2632 (1999)

    Article  Google Scholar 

  18. Daubenschüz, M., et al.: Efficient experimental analysis of internal temperatures in VCSELs. In: Proceedings of Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, Munich. IEEE (2017)

    Google Scholar 

  19. Suzuki, N., et al.: High speed 1.1-µm-range InGaAs-based VCSELs. IEICE Trans. Electron. 92(7), 942–950 (2009)

    Google Scholar 

  20. Kingma, D., et al.: Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Wenhao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Chen, W. (2020). A Rectified Linear Unit Model for Diagnosing VCSEL’s Power Output. In: He, J., et al. Data Science. ICDS 2019. Communications in Computer and Information Science, vol 1179. Springer, Singapore. https://doi.org/10.1007/978-981-15-2810-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2810-1_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2809-5

  • Online ISBN: 978-981-15-2810-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics