Skip to main content

Full-Duplex Non-Orthogonal Multiple Access Systems

  • Chapter
  • First Online:
  • 922 Accesses

Abstract

Full-duplex communications and non-orthogonal multiple access (NOMA) each can deliver high spectral efficiency for modern wireless systems. In this chapter, we investigate the joint performance of full-duplex and NOMA when applied in multiple antenna systems, systems based on the antenna selection and relaying systems based on the cognitive radio principle. First, we explore the current research progress reported in the recent literature. Next, we consider downlink NOMA operation in which a central transmitter communicates with a pair of near and far located users with the help of a multi-antenna equipped full-duplex relay. In particular, optimum and suboptimal beamforming schemes are proposed to counter the self-interference effect and inter-user interference at the strong user. Next, we study the problem of selecting best transmit/receive antennas in full-duplex NOMA systems. To this end, a multi-antenna equipped access point and a full-duplex relay setup is considered in which a base station serves a user located nearby while at the same time, a relay is used to assist communication between the access point and a far user. Finally, we investigate the integration of full-duplex and NOMA in cognitive relay systems and pose an optimization problem to maximize the near/far user information rate region. The presented results clearly demonstrate that full-duplex operation at terminals with NOMA is capable of ushering in performance gains for the systems studied. We also identify several future research directions that are useful in designing future full-duplex enabled NOMA systems.

Portions of this chapter are reprinted from Refs. [22, 23, 43], with permission from IEEE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, Sep. 2014.

    Article  Google Scholar 

  2. Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, “Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag., vol. 53, pp. 128–137, May 2015.

    Article  Google Scholar 

  3. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proc. IEEE Veh. Technol. Conf. (VTC’13), Dresden, Germany, June 2013, pp. 1–5.

    Google Scholar 

  4. L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of non-orthogonal multiple access for 5G,” IEEE Commun. Surveys Tuts., vol. 20, pp. 2294–2323, thirdquarter 2018.

    Google Scholar 

  5. M. Mohammadi, X. Shi, B. K. Chalise, Z. Ding, H. A. Suraweera, C. Zhong, and J. S. Thompson, “Full-duplex non-orthogonal multiple access for next generation wireless systems,” IEEE Commun. Mag., vol. 57, no. 5, pp. 110–116, May 2019.

    Article  Google Scholar 

  6. M. Duarte, “Full-duplex wireless: Design, implementation and characterization,” Ph.D. dissertation, Dept. Elect. and Computer Eng., Rice University, Houston, TX, 2012.

    Google Scholar 

  7. S. S. Hong, J. Brand, J. I. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag., vol. 52, no. 2, pp. 114–121, Feb. 2014.

    Article  Google Scholar 

  8. E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference suppression for full-duplex infrastructure nodes,” vol. 13, no. 2, pp. 680–694, Feb. 2014.

    Google Scholar 

  9. C. Psomas, M. Mohammadi, I. Krikidis, and H. A. Suraweera, “Impact of directionality on interference mitigation in full-duplex cellular networks,” IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 487–502, Jan 2017.

    Article  Google Scholar 

  10. T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback self-interference in full-duplex MIMO relays,” IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5983–5993, Dec. 2011.

    Article  MathSciNet  Google Scholar 

  11. L. Laughlin, M. A. Beach, K. A. Morris, and J. L. Haine, “Optimum single antenna full duplex using hybrid junctions,” IEEE J. Sel. Areas Commun., vol. 32, pp. 1653–1661, Sep. 2014.

    Article  Google Scholar 

  12. H. A. Suraweera, I. Krikidis, G. Zheng, C. Yuen, and P. J. Smith, “Low-complexity end-to-end performance optimization in MIMO full-duplex relay systems,” IEEE Trans. Wireless Commun., vol. 13, no. 2, pp. 913–927, Jan. 2014.

    Article  Google Scholar 

  13. H. Q. Ngo, H. A. Suraweera, M. Matthaiou, and E. G. Larsson, “Multipair full-duplex relaying with massive arrays and linear processing,” IEEE J. Sel. Areas Commun., vol. 32, pp. 1721–1737, Sep. 2014.

    Article  Google Scholar 

  14. Y. Cai, Z. Qin, F. Cui, G. Y. Li, and J. A. McCann, “Modulation and multiple access for 5G networks,” IEEE Commun. Surveys Tuts., vol. 20, pp. 629–646, Firstquarter 2018.

    Google Scholar 

  15. Z. Zhang, H. Sun, and R. Q. Hu, “Downlink and uplink non-orthogonal multiple access in a dense wireless network,” IEEE J. Sel. Areas Commun., vol. 35, pp. 2771–2784, Dec. 2017.

    Article  Google Scholar 

  16. Z. Ding, M. Peng, and H. V. Poor, “Cooperative non-orthogonal multiple access in 5G systems,” IEEE Commun. Lett., vol. 19, pp. 1462–1465, Aug. 2015.

    Article  Google Scholar 

  17. L. Lv, J. Chen, Q. Ni, Z. Ding, and H. Jiang, “Cognitive non-orthogonal multiple access with cooperative relaying: A new wireless frontier for 5G spectrum sharing,” IEEE Communications Magazine, vol. 56, pp. 188–195, Apr. 2018.

    Article  Google Scholar 

  18. Z. Yang, W. Xu, H. Xu, J. Shi, and M. Chen, “Energy efficient non-orthogonal multiple access for machine-to-machine communications,” IEEE Commun. Lett., vol. 21, pp. 817–820, Apr. 2017.

    Article  Google Scholar 

  19. F. Zhou, Y. Wu, R. Q. Hu, Y. Wang, and K. K. Wong, “Energy-efficient NOMA enabled heterogeneous cloud radio access networks,” IEEE Netw., vol. 32, pp. 152–160, Mar. 2018.

    Article  Google Scholar 

  20. Z. Ding, P. Fan, and H. V. Poor, “On the coexistence between full-duplex and NOMA,” IEEE Wireless Commun. Lett., vol. 7, pp. 692–695, Oct. 2018.

    Article  Google Scholar 

  21. C. Zhong and Z. Zhang, “Non-orthogonal multiple access with cooperative full-duplex relaying,” IEEE Commun. Lett., vol. 20, pp. 2478–2481, Dec. 2016.

    Article  Google Scholar 

  22. Z. Mobini, M. Mohammadi, B. K. Chalise, H. A. Suraweera, and Z. Ding, “Beamforming design and performance analysis of full-duplex cooperative NOMA systems,” IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 3295–3311, June 2019.

    Article  Google Scholar 

  23. M. Mohammadi, Z. Mobini, H. A. Suraweera, and Z. Ding, “Antenna selection in full-duplex cooperative NOMA systems,” in Proc. IEEE Intl. Conf. Commun. (ICC’18), Kansas City, Missouri, USA, May 2018, pp. 1–6.

    Google Scholar 

  24. X. Yue, Y. Liu, S. Kang, A. Nallanathan, and Z. Ding, “Exploiting full/half-duplex user relaying in NOMA systems,” IEEE Trans. Commun., vol. 66, pp. 560–575, Feb. 2017.

    Article  Google Scholar 

  25. B. Zheng, M. Wen, C. Wang, X. Wang, F. Chen, J. Tang, and F. Ji, “Secure NOMA based two-way relay networks using artificial noise and full duplex,” IEEE J. Sel. Areas Commun., vol. 36, pp. 1426–1440, Jul. 2018.

    Article  Google Scholar 

  26. M. F. Kader, S. Y. Shin, and V. C. M. Leung, “Full-duplex non-orthogonal multiple access in cooperative relay sharing for 5G systems,” IEEE Trans. Veh. Technol., vol. 67, pp. 5831–5840, July 2018.

    Article  Google Scholar 

  27. Q. Y. Liau, C. Y. Leow, and Z. Ding, “Amplify-and-forward virtual full-duplex relaying-based cooperative NOMA,” IEEE Wireless Commun. Lett., vol. 7, no. 3, pp. 464–467, June 2018.

    Article  Google Scholar 

  28. Q. Y. Liau and C. Y. Leow, “Cooperative NOMA system with virtual full duplex user relaying,” IEEE Access, vol. 7, pp. 2502–2511, 2019.

    Article  Google Scholar 

  29. Z. Zhang, Z. Ma, M. Xiao, Z. Ding, and P. Fan, “Full-duplex device-to-device aided cooperative non-orthogonal multiple access,” IEEE Trans. Veh. Technol., vol. 66, pp. 4467–4471, May 2017.

    Google Scholar 

  30. L. Zhang, J. Liu, M. Xiao, G. Wu, Y. C. Liang, and S. Li, “Performance analysis and optimization in downlink NOMA systems with cooperative full-duplex relaying,” IEEE J. Sel. Areas Commun., vol. 35, pp. 2398–2412, Oct. 2017.

    Article  Google Scholar 

  31. T. N. Do, D. B. da Costa, T. Q. Duong, and B. An, “Improving the performance of cell-edge users in NOMA systems using cooperative relaying,” IEEE Trans. Commun., vol. 66, pp. 1883–1901, May 2018.

    Article  Google Scholar 

  32. Y. Sun, D. W. K. Ng, Z. Ding, and R. Schober, “Optimal joint power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems,” IEEE Trans. Commun., vol. 65, pp. 1077–1091, Mar. 2017.

    Article  Google Scholar 

  33. M. S. Elbamby, M. Bennis, W. Saad, M. Debbah, and M. Latva-aho, “Resource optimization and power allocation in in-band full duplex-enabled non-orthogonal multiple access networks,” vol. 35, no. 12, pp. 2860–2873, Dec. 2017.

    Google Scholar 

  34. L. Lei, E. Lagunas, S. Chatzinotas, and B. Ottersten, “NOMA aided interference management for full-duplex self-backhauling HetNets,” IEEE Communications Letters, vol. 22, pp. 1696–1699, Aug. 2018.

    Article  Google Scholar 

  35. Y. Sun, D. W. K. Ng, J. Zhu, and R. Schober, “Robust and secure resource allocation for full-duplex MISO multicarrier NOMA systems,” IEEE Trans. Commun., vol. 66, pp. 4119–4137, Sep. 2018.

    Article  Google Scholar 

  36. R. Tang, H. Qu, J. Zhao, J. Cheng, and Z. Cao, “Distributed resource allocation for IBFD-enabled NOMA systems,” IEEE Commun. Lett., vol. 22, pp. 2318–2321, Nov. 2018.

    Article  Google Scholar 

  37. X. Zhang and F. Wang, “Resource allocation for wireless power transmission over full-duplex OFDMA/NOMA mobile wireless networks,” IEEE J. Sel. Areas Commun., vol. 37, pp. 327–344, Feb. 2019.

    Article  Google Scholar 

  38. Y. Alsaba, C. Y. Leow, and S. K. A. Rahim, “Full-duplex cooperative non-orthogonal multiple access with beamforming and energy harvesting,” IEEE Access, vol. 6, pp. 19 726–19 738, 2018.

    Google Scholar 

  39. Z. Wang, X. Yue, and Z. Peng, “Full-duplex user relaying for NOMA system with self-energy recycling,” IEEE Access, vol. 6, pp. 67 057–67 069, 2018.

    Google Scholar 

  40. P. Deng, B. Wang, W. Wu, and T. Guo, “Transmitter design in MISO-NOMA system with wireless-power supply,” IEEE Commun. Lett., vol. 22, pp. 844–847, Apr. 2018.

    Article  Google Scholar 

  41. C. Guo, L. Zhao, C. Feng, Z. Ding, and H. Chen, “Energy harvesting enabled NOMA systems with full-duplex relaying,” IEEE Trans. Veh. Technol., pp. 1–1, 2019.

    Google Scholar 

  42. Y. Yuan, Y. Xu, Z. Yang, P. Xu, and Z. Ding, “Energy efficiency optimization in full-duplex user-aided cooperative SWIPT NOMA systems,” IEEE Trans. Commun., pp. 1–1, 2019.

    Google Scholar 

  43. M. Mohammadi, B. K. Chalise, A. Hakimi, Z. Mobini, H. A. Suraweera, and Z. Ding, “Beamforming design and power allocation for full-duplex non-orthogonal multiple access cognitive relaying,” IEEE Trans. Commun., vol. 66, pp. 5952–5965, Dec. 2018.

    Article  Google Scholar 

  44. L. Lei, E. Lagunas, S. Maleki, Q. He, S. Chatzinotas, and B. Ottersten, “Energy optimization for full-duplex self-backhauled HetNet with non-orthogonal multiple access,” in Proc. 18th Intl. Workshop on Signal Process. Advances in Wireless Commun. (SPAWC’17), Sapporo, Japan, July 2017, pp. 1–5.

    Google Scholar 

  45. Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, “Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer,” IEEE J. Sel. Areas Commun., vol. 34, pp. 938–953, Apr. 2016.

    Article  Google Scholar 

  46. Z. Ding, H. Dai, and H. V. Poor, “Relay selection for cooperative NOMA,” IEEE Wireless Commun. Lett., vol. 5, pp. 416–419, Aug. 2016.

    Article  Google Scholar 

  47. M. Mohammadi, B. K. Chalise, H. A. Suraweera, C. Zhong, G. Zheng, and I. Krikidis, “Throughput analysis and optimization of wireless-powered multiple antenna full-duplex relay systems,” IEEE Trans. Commun., vol. 64, no. 4, pp. 1769–1785, Apr. 2016.

    Article  Google Scholar 

  48. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed. San Diego, CA: Academic Press, 2007.

    MATH  Google Scholar 

  49. Y. Yu, H. Chen, Y. Li, Z. Ding, and B. Vucetic, “Antenna selection for MIMO-NOMA networks,” in Proc. IEEE ICC 2017, Paris, France, May 2017, pp. 1–6.

    Google Scholar 

  50. N. T. Do, D. B. da Costa, T. Q. Duong, and B. An, “Transmit antenna selection schemes for MISO-NOMA cooperative downlink transmissions with hybrid SWIPT protocol,” in Proc. IEEE ICC 2017, Paris, France, May 2017, pp. 1–6.

    Google Scholar 

  51. Y. Zhang, J. Ge, and E. Serpedin, “Performance analysis of nonorthogonal multiple access for downlink networks with antenna selection over Nakagami-m fading channels,” IEEE Trans. Veh. Technol., vol. 66, pp. 10 590–10 594, Nov. 2017.

    Google Scholar 

  52. Y. Deng, K. J. Kim, T. Q. Duong, M. Elkashlan, G. K. Karagiannidis, and A. Nallanathan, “Full-duplex spectrum sharing in cooperative single carrier systems,” IEEE Trans. Cognit. Commun. Netw., vol. 2, pp. 68–82, Mar. 2016.

    Article  Google Scholar 

  53. Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions,” IEEE Trans. Veh. Technol., vol. 65, pp. 6010–6023, Aug. 2016.

    Article  Google Scholar 

  54. H. Kim, S. Lim, H. Wang, and D. Hong, “Optimal power allocation and outage analysis for cognitive full-duplex relay systems,” IEEE Trans. Wireless Commun., vol. 11, pp. 3754–3765, Oct. 2012.

    Article  Google Scholar 

Download references

Acknowledgements

The work of Z. Ding was supported by the UK EPSRC under grant number EP/L025272/1, NSFC under grant number 61728101 and H2020-MSCA-RISE-2015 under grant number 690750.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadali Mohammadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammadi, M., Chalise, B.K., Suraweera, H.A., Ding, Z. (2020). Full-Duplex Non-Orthogonal Multiple Access Systems. In: Alves, H., Riihonen, T., Suraweera, H. (eds) Full-Duplex Communications for Future Wireless Networks. Springer, Singapore. https://doi.org/10.1007/978-981-15-2969-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2969-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2968-9

  • Online ISBN: 978-981-15-2969-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics