Skip to main content

A Generalized Cellular Automata Approach to Modelling Contagion and Monitoring for Emergent Events in Sensor Networks

  • Conference paper
  • First Online:
Digital TV and Wireless Multimedia Communication (IFTC 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1181))

  • 612 Accesses

Abstract

In order to improve the invulnerability and adaptability in sensor networks, we propose a cellular automata (CA) based propagation control mechanism (CACM) to inhibit and monitor emergent-event contagion. The cellular evolving rules of CACM are figured in multi-dimension convolution operations and cell state transform, which can be utilized to model the complex behavior of sensor nodes by separating the intrinsic and extrinsic states for each network cell. Furthermore, inspired by burning pain for Wireworld based monitoring model, network entropy theory is introduced into layered states on CACM to construct particle-based information communication process by efficient distribution of event-related messages on network routers, thus an invulnerable and energy-efficient diffusion and monitoring being achieved. Experiment results prove that CACM can outperform traditional propagation models in adaptive invulnerability and self-recovery scalability on sensor networks for propagation control on malicious events.

This work was supported by the Science and Technology Commission of Shanghai Municipality (17511108604), the National Natural Science Foundation of China (61501187 and 61673178).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ren, F.Y.: Wireless sensor networks. J. Softw. 14(14), 1513–1525 (2003)

    Google Scholar 

  2. Liu, X., Han, J., Ni, G., Zhang, C., Liu, Y.: A multipath redundant transmission algorithm for MANET. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds.) CSPS 2017. LNEE, vol. 463, pp. 518–524. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-6571-2_63

    Chapter  Google Scholar 

  3. Libi, F., Song, W., Wei, L., Lo, S.: Simulation of emotional contagion using modified sir model: a cellular automaton approach. Phys. A Stat. Mech. Appl. 405, 380–391 (2014)

    Article  Google Scholar 

  4. Shaw, A.K., Tsvetkova, M., Daneshvar, R.: The effect of gossip on social networks. Complexity 16(4), 39–47 (2011)

    Article  MathSciNet  Google Scholar 

  5. Tang, S., Myers, D., Yuan, J.: Modified SIS epidemic model for analysis of virus spread in wireless sensor networks. Int. J. Wirel. Mob. Comput. 6(2), 99–108 (2013)

    Article  Google Scholar 

  6. Fresnadillo, M.J., García, E., García, J.E., Martín, Á., Rodríguez, G.: A SIS epidemiological model based on cellular automata on graphs. In: Omatu, S., et al. (eds.) IWANN 2009. LNCS, vol. 5518, pp. 1055–1062. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02481-8_160

    Chapter  Google Scholar 

  7. Peng, S., Wang, G., Shui, Y.: Modeling the dynamics of worm propagation using two-dimensional cellular automata in smartphones. J. Comput. Syst. Sci. 79(5), 586–595 (2013)

    Article  MathSciNet  Google Scholar 

  8. Choudhury, S.: Cellular automata and wireless sensor networks. In: Adamatzky, A. (ed.) Emergent Computation. ECC, vol. 24, pp. 321–335. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46376-6_14

    Chapter  Google Scholar 

  9. Baryshnikov, Y.M., Coffman, E., Kwak, K.J.: High performance sleep-wake sensor systems based on cyclic cellular automata. In: 2008 International Conference on Information Processing in Sensor Networks (IPSN 2008), pp. 517–526. IEEE (2008)

    Google Scholar 

  10. Athanassopoulos, S., Kaklamanis, C., Katsikouli, P., Papaioannou, E.: Cellular automata for topology control in wireless sensor networks. In: 2012 16th IEEE Mediterranean Electrotechnical Conference, pp. 212–215. IEEE (2012)

    Google Scholar 

  11. Mansilla, R., Gutierrez, J.L.: Deterministic site exchange cellular automata model for the spread of diseases in human settlements (2000)

    Google Scholar 

  12. He, Y., Zhang, W., Jiang, N., Luo, X.: The research of scale-free sensor network topology evolution based on the energy efficient. In: 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 221–226. IEEE (2014)

    Google Scholar 

  13. Hennebert, C., Hossayni, H., Lauradoux, C.: The entropy of wireless statistics. In: 2014 European Conference on Networks and Communications (EuCNC), pp. 1–5. IEEE (2014)

    Google Scholar 

  14. Harris, D., Harris, S.: Digital Design and Computer Architecture. Morgan Kaufmann, Burlington (2010)

    Google Scholar 

  15. Wu, T.L., Lai, Y.H., Fung, R.F.: Comparisons of fitness functions in identifying an electromagnetic energy harvester. J. Vib. Eng. Technol. 7(2), 167–177 (2019)

    Article  Google Scholar 

  16. Lopez, L., Burguerner, G., Giovanini, L.: Addressing population heterogeneity and distribution in epidemics models using a cellular automata approach. BMC Res. Notes 7(1), 1–11 (2014)

    Article  Google Scholar 

  17. Panwar, H., Gupta, S.: Optimized large margin classier based on perceptron. In: Wyld, D., Zizka, J., Nagamalai, D. (eds.) Advances in Computer Science, Engineering & Applications. AINSC, vol. 166, pp. 385–392. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30157-5_38

    Chapter  Google Scholar 

  18. Akram, H., Khalid, S., et al.: Using features of local densities, statistics and HMM toolkit (HTK) for offline Arabic handwriting text recognition. J. Electr. Syst. Inf. Technol. 4(3), 387–396 (2017)

    Article  Google Scholar 

  19. Mata, J., Cohn, M.: Cellular automata-based modeling program: synthetic immune system. Immunol. Rev. 216(1), 198–212 (2010)

    Article  Google Scholar 

  20. Pun-Cheng, L.S.C., Chan, A.W.F.: Optimal route computation for circular public transport routes with differential fare structure. Travel Behav. Soc. 3(4), 71–77 (2016)

    Article  Google Scholar 

  21. Motter, A.E., Timme, M.: Antagonistic phenomena in network dynamics. Annu. Rev. Condens. Matter Phys. 9(1), 463–484 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, R., Yang, H., Yang, H., Ma, L. (2020). A Generalized Cellular Automata Approach to Modelling Contagion and Monitoring for Emergent Events in Sensor Networks. In: Zhai, G., Zhou, J., Yang, H., An, P., Yang, X. (eds) Digital TV and Wireless Multimedia Communication. IFTC 2019. Communications in Computer and Information Science, vol 1181. Springer, Singapore. https://doi.org/10.1007/978-981-15-3341-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3341-9_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3340-2

  • Online ISBN: 978-981-15-3341-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics