Skip to main content

Comparative Analysis of Selected Geotagging Methods

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2020)

Abstract

Geotagging is a rapidly growing technology in digital photography and searching for specific landmarks, and helps everyone in our daily lives. Navigation applications and travel guides put a number of geotagged photos on the maps, providing a good overview of the destination. Recently, the development of photo geotagging methods has become a popular issue. Implementations of the SIFT and SURF algorithms and training of convolutional neural networks to obtain image classification for landmark images are presented in this paper. Based on the results of the classification of images and geotags of other similar images, geotags have been assigned to the target images. In addition, the results of image classification obtained using feature detection algorithms and neural networks were compared and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alansari, Z., et al.: Challenges of Internet of Things and big data integration. In: Miraz, M.H., Excell, P., Ware, A., Soomro, S., Ali, M. (eds.) iCETiC 2018. LNICST, vol. 200, pp. 47–55. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95450-9_4

    Chapter  Google Scholar 

  2. Avrithis, Y., Kalantidis, Y., Tolias, G., Spyrou, E.: Retrieving landmark and non-landmark images from community photo collections. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 153–162. ACM (2010)

    Google Scholar 

  3. Azhar, R., Tuwohingide, D., Kamudi, D., Suciati, N., et al.: Batik image classification using SIFT feature extraction, bag of features and support vector machine. Procedia Comput. Sci. 72, 24–30 (2015)

    Article  Google Scholar 

  4. Balakrishnama, S., Ganapathiraju, A.: Linear discriminant analysis-a brief tutorial. Inst. Signal Inf. Process. 18, 1–8 (1998)

    Google Scholar 

  5. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  6. Chellapilla, K., Puri, S., Simard, P.: High performance convolutional neural networks for document processing (2006)

    Google Scholar 

  7. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Horak, K., Klecka, J., Bostik, O., Davidek, D.: Classification of surf image features by selected machine learning algorithms. In: 2017 40th International Conference on Telecommunications and Signal Processing (TSP), pp. 636–641. IEEE (2017)

    Google Scholar 

  9. Ioannidou, A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I.: Deep learning advances in computer vision with 3D data: a survey. ACM Comput. Surv. (CSUR) 50(2), 20 (2017)

    Article  Google Scholar 

  10. Juan, L., Gwon, L.: A comparison of SIFT, PCA-SIFT and SURF. Int. J. Signal Process. Image Process. Pattern Recogn. 8(3), 169–176 (2007)

    Google Scholar 

  11. Khan, N.Y., McCane, B., Wyvill, G.: SIFT and SURF performance evaluation against various image deformations on benchmark dataset. In: 2011 International Conference on Digital Image Computing: Techniques and Applications, pp. 501–506. IEEE (2011)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. Lachenbruch, P.A., Goldstein, M.: Discriminant analysis. Biometrics, 69–85 (1979)

    Google Scholar 

  14. Le Callet, P., Viard-Gaudin, C., Barba, D.: A convolutional neural network approach for objective video quality assessment (2006)

    Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  16. Luo, J., Ma, Y., Takikawa, E., Lao, S., Kawade, M., Lu, B.L.: Person-specific SIFT features for face recognition. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP 2007, vol. 2, pp. II-593. IEEE (2007)

    Google Scholar 

  17. Murphy, K.P., et al.: Naive Bayes classifiers, vol. 18, p. 60. University of British Columbia (2006)

    Google Scholar 

  18. Qassim, H., Verma, A., Feinzimer, D.: Compressed residual-VGG16 CNN model for big data places image recognition. In: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), pp. 169–175. IEEE (2018)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. Song, X., Liu, J., Tang, X.: Image retrieval-based landmark recognition system. Electron. Des. Eng. (12), 54 (2012)

    Google Scholar 

  21. Szarvas, M., Yoshizawa, A., Yamamoto, M., Ogata, J.: Pedestrian detection with convolutional neural networks. In: Intelligent Vehicles Symposium, pp. 224–229 (2005)

    Google Scholar 

  22. Yu, X., Zhou, F., Chandraker, M.: Deep deformation network for object landmark localization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 52–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_4

    Chapter  Google Scholar 

  23. Zheng, Y.T., et al.: Tour the world: building a web-scale landmark recognition engine. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1085–1092. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Trawiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mu, S., Piwowarczyk, M., Kutrzyński, M., Trawiński, B., Telec, Z. (2020). Comparative Analysis of Selected Geotagging Methods. In: Sitek, P., Pietranik, M., Krótkiewicz, M., Srinilta, C. (eds) Intelligent Information and Database Systems. ACIIDS 2020. Communications in Computer and Information Science, vol 1178. Springer, Singapore. https://doi.org/10.1007/978-981-15-3380-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3380-8_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3379-2

  • Online ISBN: 978-981-15-3380-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics