Skip to main content

An Improved Squirrel Search Algorithm with Reproduction and Competition Mechanisms

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1159))

  • 961 Accesses

Abstract

The performance of the recently-proposed Squirrel Search Algorithm (SSA) is improved in this paper. SSA is a swarm intelligence algorithm that simulates the dynamic foraging behavior of squirrels. The traditional SSA is prone to premature convergence when solving optimization problems. This work proposed a propagation and diffusion search mechanism to alleviate these drawbacks by expand the search space using the Invasive Weed Algorithm (IWO). The proposed algorithm, which called SSIWO, has high ability to improve the exploration and local optimal avoidance of SSA. In order to investigate the performance proposed SSIWO algorithm, several experiments are conducted on eight benchmark functions and using three algorithms. The experimental results show the superior performance of the proposed SSIWO algorithm to determine the optimal solutions of the benchmark function problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holland John, H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    MATH  Google Scholar 

  2. Oliva, D., El Aziz, M.A., Hassanien, A.E.: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl. Energy 200, 141–154 (2017)

    Article  Google Scholar 

  3. Lin, K.-C., Zhang, K.-Y., Huang, Y.-H., Hung, J.C., Yen, N.: Feature selection based on an improved cat swarm optimization algorithm for big data classification. J. Supercomput. 72(8), 3210–3221 (2016). https://doi.org/10.1007/s11227-016-1631-0

    Article  Google Scholar 

  4. Tang, J., Yang, Y., Qi, Y.: A hybrid algorithm for urban transit schedule optimization. Phys. A 512, 745–755 (2018)

    Article  MathSciNet  Google Scholar 

  5. Zhang, X., Wang, Y., Cui, G., Niu, Y., Xu, J.: Application of a novel IWO to the design of encoding sequences for DNA computing. Comput. Math. Appl. 57(11–12), 2001–2008 (2009)

    Article  Google Scholar 

  6. Kabir, M.M., Shahjahan, M., Murase, K.: A new hybrid ant colony optimization algorithm for feature selection. Expert Syst. Appl. 39(3), 3747–3763 (2012)

    Article  Google Scholar 

  7. Wang, S.-H., et al.: Single slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimization. Multimed. Tools Appl. 77(9), 10393–10417 (2016). https://doi.org/10.1007/s11042-016-4222-4

    Article  Google Scholar 

  8. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to nondominated sorting for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 19(2), 201–213 (2014)

    Article  Google Scholar 

  9. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13495-1_44

    Chapter  Google Scholar 

  10. Zhang, X., Niu, Y., Cui, G., Wang, Y.: A modified invasive weed optimization with crossover operation. In: 2010 8th World Congress on Intelligent Control and Automation, pp. 11–14. IEEE (2010)

    Google Scholar 

  11. Shen, W., Guo, X., Wu, C., Wu, D.: Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowl.-Based Syst. 24(3), 378–385 (2011)

    Article  Google Scholar 

  12. Marzband, M., Yousefnejad, E., Sumper, A., Domínguez-García, J.L.: Real time experimental implementation of optimum energy management system in standalone microgrid by using multi-layer ant colony optimization. Int. J. Electr. Power Energy Syst. 75, 265–274 (2016)

    Article  Google Scholar 

  13. Zhang, M., Wang, H., Cui, Z., Chen, J.: Hybrid multi-objective cuckoo search with dynamical local search. Memetic Comput. 10(2), 199–208 (2017). https://doi.org/10.1007/s12293-017-0237-2

    Article  Google Scholar 

  14. Wang, G.-G., Gandomi, A.H., Alavi, A.H., Gong, D.: A comprehensive review of krill herd algorithm: variants, hybrids and applications. Artif. Intell. Rev. 51(1), 119–148 (2017). https://doi.org/10.1007/s10462-017-9559-1

    Article  Google Scholar 

  15. Mitić, M., Vuković, N., Petrović, M., Miljković, Z.: Chaotic fruit fly optimization algorithm. Knowl.-Based Syst. 89, 446–458 (2015)

    Article  Google Scholar 

  16. Wu, D., Xu, S., Kong, F.: Convergence analysis and improvement of the chicken swarm optimization algorithm. IEEE Access 4, 9400–9412 (2016)

    Article  Google Scholar 

  17. Mirjalili, S., Saremi, S., Mirjalili, S.M., Coelho, L.d.S.: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47, 106–119 (2016)

    Google Scholar 

  18. Mirjalili, S.Z., Mirjalili, S., Saremi, S., Faris, H., Aljarah, I.: Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48(4), 805–820 (2017). https://doi.org/10.1007/s10489-017-1019-8

    Article  Google Scholar 

  19. Elsisi, M.: Future search algorithm for optimization. Evol. Intel. 12(1), 21–31 (2018). https://doi.org/10.1007/s12065-018-0172-2

    Article  MathSciNet  Google Scholar 

  20. Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23(3), 715–734 (2018). https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  21. Jiang, Q., Wang, L., Hei, X.: Parameter identification of chaotic systems using artificial raindrop algorithm. J. Comput. Sci. 8, 20–31 (2015)

    Article  MathSciNet  Google Scholar 

  22. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  23. Singh, A., Deep, K.: Exploration–exploitation balance in Artificial Bee Colony algorithm: a critical analysis. Soft. Comput. 23(19), 9525–9536 (2018). https://doi.org/10.1007/s00500-018-3515-0

    Article  Google Scholar 

  24. Abbattista, F., Abbattista, N., Caponetti, L.: An evolutionary and cooperative agents model for optimization. In: Proceedings of 1995 IEEE International Conference on Evolutionary Computation, vol. 2, pp. 668–671. IEEE (1995)

    Google Scholar 

  25. Trivedi, A., Srinivasan, D., Biswas, S., Reindl, T.: A genetic algorithm–differential evolution based hybrid framework: case study on unit commitment scheduling problem. Inf. Sci. 354, 275–300 (2016)

    Article  Google Scholar 

  26. Jain, M., Singh, V., Rani, A.: A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol. Comput. 44, 148–175 (2019)

    Article  Google Scholar 

  27. Mehrabian, A.R., Lucas, C.: A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 1(4), 355–366 (2006)

    Article  Google Scholar 

  28. Chen, Z., Wang, S., Deng, Z., Zhang, X.: Tuning of auto-disturbance rejection controller based on the invasive weed optimization. In: 2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications, pp. 314–318. IEEE (2011)

    Google Scholar 

  29. Pan, G., Li, K., Ouyang, A., Zhou, X., Xu, Y.: A hybrid clustering algorithm combining cloud model IWO and K-means. Int. J. Pattern Recognit Artif Intell. 28(06), 1450015 (2014)

    Article  Google Scholar 

  30. Zhou, Y., Luo, Q., Chen, H., He, A., Wu, J.: A discrete invasive weed optimization algorithm for solving traveling salesman problem. Neurocomputing 151, 1227–1236 (2015)

    Article  Google Scholar 

  31. Karimkashi, S., Kishk, A.A., Kajfez, D.: Antenna array optimization using dipole models for mimo applications. IEEE Trans. Antennas Propag. 59(8), 3112–3116 (2011)

    Article  Google Scholar 

  32. Bishop, K.L.: The relationship between 3-D kinematics and gliding performance in the southern flying squirrel, Glaucomys volans. J. Exp. Biol. 209(4), 689–701 (2006)

    Article  Google Scholar 

  33. Vernes, K.: Gliding performance of the northern flying squirrel (Glaucomys Sabrinus) in mature mixed forest of eastern Canada. J. Mammal. 82(4), 1026–1033 (2001)

    Article  Google Scholar 

  34. Thomas, R.B., Weigl, P.D.: Dynamic foraging behavior in the southern flying squirrel (Glaucomys volans): test of a model. Am. Midl. Nat. 140(2), 264–271 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The work for this paper was supported by the National Natural Science Foundation of China (Grant nos. 61572446, 61602424, and U1804262), Key Scientific and Technological Project of Henan Province (Grant nos. 174100510009, 192102210134), and Key Scientific Research Projects of Henan High Educational Institution (18A510020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuncai Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Zhao, K. (2020). An Improved Squirrel Search Algorithm with Reproduction and Competition Mechanisms. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1159. Springer, Singapore. https://doi.org/10.1007/978-981-15-3425-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3425-6_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3424-9

  • Online ISBN: 978-981-15-3425-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics