Skip to main content

Ensemble Learning via Multimodal Multiobjective Differential Evolution and Feature Selection

  • Conference paper
  • First Online:
  • 1027 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1159))

Abstract

Ensemble learning is an important element in machine learning. However, two essential tasks, including training base classifiers and finding a suitable ensemble balance for the diversity and accuracy of these base classifiers, are need to be achieved. In this paper, a novel ensemble method, which utilizes a multimodal multiobjective differential evolution (MMODE) algorithm to select feature subsets and optimize base classifiers parameters, is proposed. Moreover, three methods including minimum error ensemble, all Pareto sets ensemble, and error reduction ensemble are employed to construct ensemble classifiers for executing classification tasks. Experimental results on several benchmark classification databases evidence that the proposed algorithm is valid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Song, Y., et al.: Gaussian derivative models and ensemble extreme learning machine for texture image classification. Neurocomputing 277, 53–64 (2018)

    Article  Google Scholar 

  2. Piri, S., Delen, D., Liu, T., Zolbanin, H.M.: A data analytics approach to building a clinical decision support system for diabetic retinopathy: developing and deploying a model ensemble. Decis. Support Syst. 101, 12–27 (2017)

    Article  Google Scholar 

  3. Zhao, Z., Jiao, L., Liu, F., Zhao, J., Chen, P.: Semisupervised discriminant feature learning for SAR image category via sparse ensemble. IEEE Trans. Geosci. Remote Sens. 54(6), 3532–3547 (2016)

    Article  Google Scholar 

  4. Breiman, L.: Bagging predictors. Mach. Learn 24(2), 123–140 (1996)

    MATH  Google Scholar 

  5. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  7. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  8. Fernández, A., Carmona, C.J., Jose del Jesus, M., Herrera, F.: A Pareto-based ensemble with feature and instance selection for learning from multi-class imbalanced datasets. Int. J. Neural Syst. 27(06), 1750028 (2017)

    Article  Google Scholar 

  9. Albukhanajer, W.A., Jin, Y., Briffa, J.A.: Classifier ensembles for image identification using multi-objective Pareto features. Neurocomputing 238, 316–327 (2017)

    Article  Google Scholar 

  10. Lyu, H., Wan, M., Han, J., Liu, R., Wang, C.: A filter feature selection method based on the maximal information coefficient and Gram-Schmidt orthogonalization for biomedical data mining. Comput. Biol. Med. 89, 264–274 (2017)

    Article  Google Scholar 

  11. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  12. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  Google Scholar 

  13. Xue, X., Yao, M., Wu, Z.: A novel ensemble-based wrapper method for feature selection using extreme learning machine and genetic algorithm. Knowl. Inf. Syst. 57(2), 389–412 (2017). https://doi.org/10.1007/s10115-017-1131-4

    Article  Google Scholar 

  14. Zhang, Y., Gong, D., Cheng, J.: Multi-objective particle swarm optimization approach for cost-based feature selection in classification. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 14(1), 64–75 (2017)

    Article  Google Scholar 

  15. Quinlan, J.R.: Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4, 77–90 (1996)

    Article  Google Scholar 

  16. Kamyab, S., Eftekhari, M.: Feature selection using multimodal optimization techniques. Neurocomputing 171, 586–597 (2016)

    Article  Google Scholar 

  17. Pan, L., Li, L., He, C., Tan, K.C.: A subregion division-based evolutionary algorithm with effective mating selection for many-objective optimization. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2906679

  18. He, C., Tian, Y., Jin, Y., Zhang, X., Pan, L.: A radial space division based evolutionary algorithm for many-objective optimization. Appl. Soft Comput. 61, 603–621 (2017)

    Article  Google Scholar 

  19. Yue, C., Qu, B., Liang, J.: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Trans. Evol. Comput. 22(5), 805–817 (2017)

    Article  Google Scholar 

  20. Deb, K., Tiwari, S.: Omni-optimizer: a procedure for single and multi-objective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 47–61. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_4

    Chapter  MATH  Google Scholar 

  21. Liang, J., Guo, Q., Yue, C., Qu, B., Yu, K.: A self-organizing multi-objective particle swarm optimization algorithm for multimodal multi-objective problems. In: Tan, Y., Shi, Y., Tang, Q. (eds.) ICSI 2018. LNCS, vol. 10941, pp. 550–560. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93815-8_52

    Chapter  Google Scholar 

  22. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  23. Tanabe, R., Ishibuchi, H.: A review of evolutionary multimodal multiobjective optimization. IEEE Trans. Evol. Comput. 24(1), 193–200 (2020). ISSN 1941-0026

    Article  Google Scholar 

  24. Li, X., Epitropakis, M.G., Deb, K., Engelbrecht, A.: Seeking multiple solutions: an updated survey on niching methods and their applications. IEEE Trans. Evol. Comput. 21(4), 518–538 (2017)

    Article  Google Scholar 

  25. Liang, J., et al.: Multimodal multiobjective optimization with differential evolution. Swarm Evol. Comput. 44, 1028–1059 (2019)

    Article  Google Scholar 

  26. Shir, O.M., Preuss, M., Naujoks, B., Emmerich, M.: Enhancing decision space diversity in evolutionary multiobjective algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 95–109. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01020-0_12

    Chapter  Google Scholar 

  27. Sikdar, U.K., Ekbal, A., Saha, S.: MODE: multiobjective differential evolution for feature selection and classifier ensemble. Soft Comput. 19(12), 3529–3549 (2015). https://doi.org/10.1007/s00500-014-1565-5

    Article  Google Scholar 

  28. Whitney, A.W.: A direct method of nonparametric measurement selection. IEEE Trans. Comput. 100(9), 1100–1103 (1971)

    Article  Google Scholar 

  29. Marill, T., Green, D.: On the effectiveness of receptors in recognition systems. IEEE Trans. Inf. Theory 9(1), 11–17 (1963)

    Article  Google Scholar 

  30. Yusta, S.C.: Different metaheuristic strategies to solve the feature selection problem. Pattern Recogn. Lett. 30(5), 525–534 (2009)

    Article  Google Scholar 

  31. Pan, L., He, C., Tian, Y., Wang, H., Zhang, X., Jin, Y.: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization. IEEE Trans. Evol. Comput. 23(1), 74–88 (2018)

    Article  Google Scholar 

  32. Pan, L., He, C., Tian, Y., Su, Y., Zhang, X.: A region division based diversity maintaining approach for many-objective optimization. Integr. Comput. Aided Eng. 24(3), 279–296 (2017)

    Article  Google Scholar 

  33. Wang, X., Yang, J., Teng, X., Xia, W., Jensen, R.: Feature selection based on rough sets and particle swarm optimization. Pattern Recogn. Lett. 28(4), 459–471 (2007)

    Article  Google Scholar 

  34. Yu, K., Qu, B., Yue, C., Ge, S., Chen, X., Liang, J.: A performance-guided jaya algorithm for parameters identification of photovoltaic cell and module. Appl. Energy 237, 241–257 (2019)

    Article  Google Scholar 

  35. Huang, C.L., Wang, C.J.: A GA-based feature selection and parameters optimizationfor support vector machines. Expert Syst. Appl. 31(2), 231–240 (2006)

    Article  Google Scholar 

  36. Wan, Y., Wang, M., Ye, Z., Lai, X.: A feature selection method based on modified binary coded ant colony optimization algorithm. Appl. Soft Comput. 49, 248–258 (2016)

    Article  Google Scholar 

  37. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  38. Huang, G.B., Chen, L., Siew, C.K., et al.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 17(4), 879–892 (2006)

    Article  Google Scholar 

  39. Feng, G., Huang, G.B., Lin, Q., Gay, R.: Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Networks 20(8), 1352–1357 (2009)

    Article  Google Scholar 

  40. Xu, Z., Yao, M., Wu, Z., Dai, W.: Incremental regularized extreme learning machine and it’s enhancement. Neurocomputing 174, 134–142 (2016)

    Article  Google Scholar 

  41. Cao, J., Lin, Z., Huang, G.B., Liu, N.: Voting based extreme learning machine. Inf. Sci. 185(1), 66–77 (2012)

    Article  MathSciNet  Google Scholar 

  42. Rosales-Perez, A., Garcia, S., Gonzalez, J.A., Coello, C.A.C., Herrera, F.: An evolutionary multi-objective model and instance selection for support vector machines with Pareto-based ensembles. IEEE Trans. Evol. Comput. 21(6), 863–877 (2017)

    Article  Google Scholar 

  43. García-Nieto, J., Alba, E., Jourdan, L., Talbi, E.: Sensitivity and specificity based multiobjective approach for feature selection: application to cancer diagnosis. Inf. Process. Lett. 109(16), 887–896 (2009)

    Article  MathSciNet  Google Scholar 

  44. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61976237, 61922072, 61876169, 61673404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Wang, B., Liang, J., Yu, K., Yue, C., Ren, X. (2020). Ensemble Learning via Multimodal Multiobjective Differential Evolution and Feature Selection. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1159. Springer, Singapore. https://doi.org/10.1007/978-981-15-3425-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3425-6_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3424-9

  • Online ISBN: 978-981-15-3425-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics