Skip to main content

Constant Envelope Rate Compatible Modulation

  • Conference paper
  • First Online:
Space Information Networks (SINC 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1169))

Included in the following conference series:

  • 745 Accesses

Abstract

The conventional rate compatible modulation (RCM) uses the high-order quadrature amplitude modulation (QAM) signal for rateless transmitting. The large size complex constellation with near-Gaussian probability mass function (PMF) produces high peak-to-average power ratio (PAPR). This paper presents a new method aimed at solving the PAPR problem associated with RCM. We transform the RCM signal to a constant envelope signal through concatenating RCM with continuous phase modulation (CPM), which decreases the PAPR to 0 dB. At the receiver, the serial iterative demodulating and decoding procedure is designed to improve the performance of the system. In the presence of nonlinear power amplifier, we simulate the bit error rate and spectral efficiency of the RCM-CPM and the RCM-QAM in additive Gaussian noise channels. The simulation results demonstrate that RCM-CPM outperforms RCM-QAM with input back-off, especially the performance advantage is about 3 dB at high signal-to-noise ratios (SNRs).

This work is supported by the National Nature Science Foundation of China (91538203).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui, H., Luo, C., Wu, J., et al.: Compressive coded modulation for seamless rate adaptation. IEEE Trans. Wirel. Commun. 12(10), 4892–4904 (2013)

    Article  Google Scholar 

  2. Cui, H., Luo, C., Tan, K., et al.: Seamless rate adaptation for wireless networking. In: Proceedings of the 14th International Symposium on Modeling Analysis and Simulation of Wireless and Mobile Systems, MSWiM 2011, Miami, Florida, USA, 31 October–4 November 2011, DBLP (2011)

    Google Scholar 

  3. Duan, R., Liu, R., Shirvanimoghaddam, M., et al.: A low PAPR constellation mapping scheme for rate compatible modulation. IEEE Commun. Lett. 20(2), 256–259 (2016)

    Article  Google Scholar 

  4. Krongold, B.S., Jones, D.L.: An active-set approach for OFDM PAR reduction via tone reservation. IEEE Trans. Signal Process. 52(2), 495–509 (2004)

    Article  MathSciNet  Google Scholar 

  5. Armstrong, J.: Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. Electron. Lett. 38(5), 246 (2002)

    Article  Google Scholar 

  6. Dandrea, A.N., Lottici, V., Reggiannini, R.: Nonlinear predistortion of OFDM signals over frequency-selective fading channels. IEEE Trans. Commun. 49(5), 837–843 (2001)

    Article  Google Scholar 

  7. Thompson, S.C., Ahmed, A.U., Proakis, J.G., et al.: Constant envelope OFDM. IEEE Trans. Commun. 56(8), 1300–1312 (2008)

    Article  Google Scholar 

  8. Wang, C., Cui, G., Wang, W.: Dual-stream transceiver structure with single antenna for phase-modulated OFDM. IEEE Commun. Lett. 20(9), 1756–1759 (2016)

    Article  Google Scholar 

  9. Cui, G., Wang, C., Wang, W.: Iterative detection with amplitude-phase demodulator for dual-stream CE-OFDM. IEEE Commun. Lett. 21(9), 1 (2017)

    Article  Google Scholar 

  10. Aulin, T., Sundberg, C.: Continuous phase modulation - part I: full response signaling. IEEE Trans. Commun. 29(3), 196–209 (2003)

    Article  Google Scholar 

  11. Narayanan, K.R., Altunbas, I., Narayanaswami, R.S.: Design of serial concatenated MSK schemes based on density evolution. IEEE Trans. Commun. 51(8), 1283–1295 (2003)

    Article  Google Scholar 

  12. Benaddi, T., Poulliat, C., Boucheret, M.L., et al.: Asymptotic analysis and design of LDPC codes for laurent-based optimal and suboptimal CPM receivers. In: IEEE International Conference on Acoustics. IEEE (2014)

    Google Scholar 

  13. Bahl, L.R., Cocke, J., Jelinek, F., et al.: Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory 20(2), 284–287 (1974)

    Article  MathSciNet  Google Scholar 

  14. Lu, F., Dong, Y., Rao, W.: A parallel belief propagation decoding algorithm for rate compatible modulation. IEEE Commun. Lett. 21(8), 1735–1738 (2017)

    Article  Google Scholar 

  15. Rapp, C.: Effects of the HPA-nonlinearity on a 4-DPSK/OFDM signal for a digital sound broadcasting system. In: 2nd European Conference on Satellite Communications (ECSC) (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, F., Zhou, Y., Zhao, Y., Lu, F., Dong, Y. (2020). Constant Envelope Rate Compatible Modulation. In: Yu, Q. (eds) Space Information Networks. SINC 2019. Communications in Computer and Information Science, vol 1169. Springer, Singapore. https://doi.org/10.1007/978-981-15-3442-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3442-3_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3441-6

  • Online ISBN: 978-981-15-3442-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics