Skip to main content

Delaunay Triangulation Based Thinning Algorithm for Alphabet Images

  • Conference paper
  • First Online:
  • 684 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1147))

Abstract

Image thinning is one of the fundamental pre-processing steps prior to the shape representation in the image analysis of printed and handwritten alphabet recognition applications. In this paper, an approach is introduced for the thinning of alphabet images using Delaunay Triangulation algorithms. Delaunay Triangulation is one of the most essential data structures in the field of Computational Geometry. Given a finite set of points that represent an image of an alphabet, the reconstruction of the alphabet using a simplified point set is studied. The performance of the proposed model evaluated by evaluating the Thinning Rate. The alphabet images of the Chara74K dataset were used to test the model and the average Thinning Rate was found to be 91%. It is demonstrated that the proposed model can be used for reconstruction of text images, broken alphabet images and Dot-Matrix alphabet images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kardos, P., Németh, G., Palágyi, K.: An order–independent sequential thinning algorithm. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 162–175. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10210-3_13

    Chapter  Google Scholar 

  2. Bataineh, B.: An iterative thinning algorithm for binary images based on sequential and parallel approaches. Pattern Recogn. Image Anal. 28(1), 34–43 (2018). https://doi.org/10.1134/S1054661818010030

    Article  Google Scholar 

  3. Jain, H.: A sequential thinning algorithm for multi-dimensional binary patterns. arXiv, abs/1710.03025 (2017)

    Google Scholar 

  4. Huang, L., Wan, G., Liu, C.: An improved parallel thinning algorithm. In: Proceedings of the International Conference on Document Analysis and Recognition, Edinburgh, Scotland, vol. 2, pp. 780–783 (2003)

    Google Scholar 

  5. Leung, W., Ng, C.M., Yu, P.C.: Contour following parallel thinning for simple binary images. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Nashville, TN, USA, vol. 3, pp. 1650–1655 (2000)

    Google Scholar 

  6. Dong, J., Chen, Y., Yang, Z., Ling, B.W.K.: A parallel thinning algorithm based on stroke continuity detection. Signal Image Video Process. 11(5), 873–879 (2017). https://doi.org/10.1007/s11760-016-1034-y

    Article  Google Scholar 

  7. Ying-Lie, O., Toet, A., Foster, D., Heijmans, H.J.A.M., Meer, P.: Shape in Picture: Mathematical Description of Shape in Gray Level Images. NATO ASI Series. Series F: Computer and System Sciences, vol. 126. Springer, Driebergen (1994). https://doi.org/10.1007/978-3-662-03039-4

    Book  MATH  Google Scholar 

  8. Galton, A., Duckham, M.: What is the region occupied by a set of points? In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 81–98. Springer, Heidelberg (2006). https://doi.org/10.1007/11863939_6

    Chapter  Google Scholar 

  9. Blum, H.: Biological shape and visual science (Part I). J. Theor. Biol. 38(2), 205–287 (1973)

    Article  Google Scholar 

  10. Miyatake, T., Matsushima, H., Ejiri, M.: Contour representation of binary images using run-type direction codes. Mach. Vis. Appl. 9, 193–200 (1997)

    Article  Google Scholar 

  11. Danielsson, P.E.: An improvement of Kruse’s segmentation algorithm. Comput. Graph. Image Process. 17, 394–396 (1981)

    Article  Google Scholar 

  12. Shoji, K., Miyamichi, J., Hirano, K.: Contour following and reconstruction of binary images stored in run format. Syst. Comput. Jpn. 30, 1–11 (1999)

    Article  Google Scholar 

  13. Berg, D.M., Cheong, O., Kreveld, M.V., et al.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77974-2

    Book  MATH  Google Scholar 

  14. Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. Trans. Inf. Theory 29, 551–559 (1983)

    Article  MathSciNet  Google Scholar 

  15. Duckham, M., Kulik, L., Worboys, M.F., Galton, A.: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recogn. 41(10), 3224–3236 (2008)

    Article  Google Scholar 

  16. Methirumangalath, S., Parakkat, A.D., Muthuganapathy, R.: A unified approach towards reconstruction of a planar point set. Comput. Graph. 51, 90–97 (2015)

    Article  Google Scholar 

  17. Peethambaran, J., Muthuganapathy, R.: A non-parametric approach to shape reconstruction from planar point sets through Delaunay filtering. Comput. Aided Des. 62, 164–175 (2015)

    Article  Google Scholar 

  18. Methirumangalath, S., Kannan, S.S., Parakkat, A.D., Muthuganapathy, R.: Hole detection in a planar point set: an empty disk approach. Comput. Graph. 66, 124–134 (2017)

    Article  Google Scholar 

  19. Parakkat, A.D., Muthuganapathy, R.: Crawl through neighbors: a simple curve reconstruction algorithm. Comput. Graph. Forum 35, 177–186 (2016)

    Article  Google Scholar 

  20. Parakkat, A.D., Methirumangalath, S., Muthuganapathy, R.: Peeling the longest: a simple generalized curve reconstruction algorithm. Comput. Graph. 74, 191–201 (2018)

    Article  Google Scholar 

  21. Rohatgi, A.: WebPlotDigitizer, San Francisco, California, USA (2019). https://automeris.io/WebPlotDigitizer

  22. Yvinec, M.: 2D triangulation. In: CGAL User and Reference Manual, 4.10 edn. CGAL Editorial Board (2017)

    Google Scholar 

  23. http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/. Accessed 20 Mar 2019

  24. Levine, J.N.: Dots All For Now JL. https://fonts2u.com/dots-all-for-now-jl.font. Accessed 15 Mar 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philumon Joseph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joseph, P., Kovoor, B.C., Thomas, J. (2020). Delaunay Triangulation Based Thinning Algorithm for Alphabet Images. In: Nain, N., Vipparthi, S., Raman, B. (eds) Computer Vision and Image Processing. CVIP 2019. Communications in Computer and Information Science, vol 1147. Springer, Singapore. https://doi.org/10.1007/978-981-15-4015-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4015-8_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4014-1

  • Online ISBN: 978-981-15-4015-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics