
Video Colorization using CNNs and Keyframes extraction: An
application in saving bandwidth

Ankur Singh1 Anurag Chanani2 Harish Karnick3

Abstract

In this paper, we tackle the problem of colorization
of grayscale videos to reduce bandwidth usage. For this
task, we use some colored keyframes as reference images
from the colored version of the grayscale video. We
propose a model that extracts keyframes from a colored
video and trains a Convolutional Neural Network from
scratch on these colored frames. Through the extracted
keyframes we get a good knowledge of the colors that
have been used in the video which helps us in colorizing
the grayscale version of the video efficiently. An applica-
tion of the technique that we propose in this paper, is in
saving bandwidth while sending raw colored videos that
haven’t gone through any compression. A raw colored
video takes up around three times more memory size than
its grayscale version. We can exploit this fact and send
a grayscale video along with our trained model instead
of a colored video. Later on, in this paper we show how
this technique can help to save bandwidth usage to upto
three times while transmitting raw colored videos.

I. INTRODUCTION

Learning based colorization algorithms for grayscale
videos and images have been the subject of extensive re-
search in the areas of computer vision and machine learning.
Apart from being alluring from an artificial intelligence point
of view, such potential has vast practical implementations
starting from video restoration to image improvement for
enhanced understanding. Colorizing a grayscale image can
be hugely beneficial, since grayscale images contain very less
information thus adding color can add a lot of information
about the semantics.

Another motivation for video colorization that we propose,
is it’s capacity to save data while transmitting a video. A raw
colored video takes upto three times more memory than it’s
grayscale version. Hence sending a grayscale video instead
of a colored one while streaming and then colorizing it on the
receiver’s end can help save data and in turn the bandwidth.
In this paper, we propose a convolutional neural network
model that is trained on the keyframes of a raw colored video.
This model is transmitted along with the grayscale version
of the colored video and on the receiver’s end this model
colorizes the grayscale video. Apart from our convolutional
neural network model we also propose a keyframe extraction
method that extracts keyframes from a video by comparing
colored histograms of all the frames in that video.
Also, in general in image and video colorization a given
grayscale image can have varying colored outputs when
tested with different colorization models. For eg. a grayscale
image of a ball can have different colored outputs from

Fig. 1. Sending grayscale version of a raw colored video alongwith a
convolutional neural network model trained on keyframes of the video and
then colorizing the grayscale video on the receivers end.

different colorizing models. Some models may output a green
colored ball while some may output a blue colored ball.
This might differ from the actual color of the ball. Hence,
in this paper we also tackle this problem by using few
colored keyframes of the video to colorize the grayscale
video. Having a sense of the colors that have been used
in the video will help a great deal in predicting the actual
colors of the rest of the frames of the video.

Hence our work serves two purpose:

• Saving bandwidth while transmitting a video by sending
grayscale version of a raw colored video along with a
CNN model trained on the keyframes of the video and
then colorizing the grayscale video on the receiver’s end
as shown in Fig. 1.

• Tackling the problem of different colored outputs of the
same image(shown in Fig. 2) by colorizing a video using
few keyframes of the video.

ar
X

iv
:1

81
2.

03
85

8v
3 

 [
cs

.C
V

] 
 1

8 
D

ec
 2

01
8



Fig. 2. A grayscale image can have multiple colored output image from
Alexei Afros homepage

II. PREVIOUS WORK

The start of automated image colorization can be dated
back to 2002, when Welsh et. al. [11] presented an approach
which could colorize a grayscale image by transferring colors
from a related reference image. Our work on video coloriza-
tion is inspired by Baldassarre et. al. [1] system on auto-
matically colorizing images. Apart from the convolutional
neural network that we have used, they have also employed
Inception Resnet [10] as a high level feature extractor which
provides information about the image contents that helps
in their colorization. Their network consists of four main
components: an encoder, a feature extractor, a fusion layer
and a decoder. The encoding and the feature extraction parts
obtain mid and high-level features, respectively, which are
then merged in the fusion layer. Finally, the decoder uses
these features to estimate the output. Iizuka et. al. [6] and
Larsson et. al. [8] have developed similar models. Zhang et.
al. [12] use a classification loss in their architecture unlike
the regression loss that we have used.

The work on Keyframes extraction is inspired from
Zhuang et. al. [13] work on color histograms. In a color
histogram, a 1D array contains the total pixels that belong to
a particular color in the image. All the images are resized to
the same shape before their histograms are taken so that they
have equal number of pixels. To discretize the space, images
are represented in RGB colorspace using some important bits
for every color component.

The main purpose for which we’ve employed color his-
tograms in keyframes extraction is that they are very easy to
compute and show striking properties despite their simplicity.
They are often used for content based image retrieval. They
are also highly invariant to the translation and rotation
of objects in the image since they do not relate spatial
information with the pixels of the colors.

III. PROPOSED METHOD

We introduce a two step process for our approach of
colorizing grayscale videos using keyframes extraction.

The first step deals with the extraction of keyframes of
the video. The second step involves training a Convolutional
Neural Network on these keyframes and colorizing the rest
of the video using the trained model.

A. Keyframes Extraction
We extract keyframes of a video by comparing colored

histograms of all frames with a sample image. In our

Fig. 3. Result of Meanshift algorithm applied on the frames of the video,
Clusters have been represented in different colors. X axis represents indices
of the frames. Y axis denotes the Hellinger distance of a frame from the
sample image.

experiments we have taken the sample image to be a black
image(all pixels equal to zero).

We extract a 3D RGB color histogram with 8 bins per
channel for all the frames. This yields a 512-dimensional
feature vector for a frame once flattened. For comparing two
histograms we use the Hellinger distance which is used to
measure the overlap between the two histograms.

Formally, let H be the 512 dimensional colored histogram
of our sample image. Let hi be the 512 dimensional col-
ored histogram of the ith frame. We calculate the Hellinger
distance d(H, hi) between H and hi by:

d(H, hi) =
√

1− 1√
H hiN

2

∑511
j=0

√
H[j]hi[j]

N = total number of bins of the histogram, x = 1
N

∑
j x[j]

Additionally, we multiply the hellinger distance by a factor
of 10,000 to ease out calculations that follow this step.

Once, we have the distances for all the frames against our
sample image we use mean shift clustering [2] to cluster
frames whose distances from the random image are close
to each other. The mean shift algorithm is a non parametric
clustering technique that does not need initial information
about the number of clusters. This property is essential in
our problem since we don’t have any prior knowledge about
the number of clusters present in a particular video. Result
of clustering on a 1 minute video is shown in Fig. 3.

After we have the clusters we can choose every xth frame
from the cluster depending upon the number of frames we
want. We have found emperically that x equal to 30 does a
good job.

B. Training a Convolutional Neural Network

For the training part, we consider images in the CIELab
color space. Here L stands for lightness, a stands for the
green red color spectra and b stands for the blue yellow



Fig. 4. Architecture of the network: 12 convolutional and 3 upsampling layers have been used. In the 2nd 4th and the 6th convolutional layer a stride
of 2 has been applied. A final image with dimensions H x W x 2 is obtained. The 2 output channels are merged with the L component to get the final
colored image.

color spectra. A CIELab encoded image has one layer for
grayscale, and it packs three color layers into two. This
means that the original grayscale image can be used in
our final prediction. Also, we only have two channels to
predict. Starting from the L component XL, the purpose of
our model is to estimate the remaining two components Xa
and Xb.

Preprocessing
The pixel values of all three image components namely L,
a and b are centered and scaled to get values within the [-1,
1] range. All images are converted from RGB color space
to CIELab color space to feed them into our model.

Architecture
The architecture of our model is inspired from [1]. Given
the L component of an image, our model estimates it’s a and
b components and combines them with the L component to
get the final colored image. We have used 12 convolutional
layers with 3 x 3 kernels and 3 upsampling layers as shown
in Fig. 4. In the second, fourth and the sixth convolutional
layer, a stride of two is applied which halves the dimension
of their output, resulting in less number of computations
[9]. We have made use of padding to preserve the layers
input dimension. Upsampling has been performed so that
the height and width of the output are twice that of the
input. This model applies a number of convolutional and
upsampling layers in order to output a final image with
dimensions H x W x 2. The 2 output channels are a and b.
These are merged with the L component to get the colored
image.

Training
We obtain the optimal parameters of the model by minimiz-
ing a function which is defined over the predicted output
of our network and the target output. In order to quantify
the model loss, we employ the mean squared loss between
the estimated pixel colors in a, b space and their real value.
While training, we back propagate this loss to update the
model parameters using Adam Optimizer [7] with a learning
rate of 0.001. During training, we impose a fixed input image
size to allow for batch processing.

Layer Kernels Stride
Convolution (64, 3, 3) (1, 1)
Convolution (64, 3, 3) (2, 2)
Convolution (128, 3, 3) (1, 1)
Convolution (128, 3, 3) (2, 2)
Convolution (256, 3, 3) (1, 1)
Convolution (256, 3, 3) (2, 2)
Convolution (512, 3, 3) (1, 1)
Convolution (256, 3, 3) (1, 1)
Convolution (128, 3, 3) (1, 1)
Upsampling - -
Convolution (64, 3, 3) (1, 1)
Upsampling - -
Convolution (32, 3, 3) (1, 1)
Convolution (2, 3, 3) (1, 1)
Upsampling - -

TABLE I
ARCHITECTURE OF THE NETWORK

IV. EXPERIMENTS AND RESULTS

We tested our model on a number of videos. For a 256x256
24 bit 15 minute uncompressed colored video that has a size
of around 5 GB, we could save a bandwidth of around 3.30
GB as our trained model had a size of only 30MB. Also, it
took us only around 6 minutes for the whole process starting
from keyframes extraction to training a model and finally
obtaining the colored output video for a 256x256 24 bit 15
minute video on NVIDIA GeForce GTX 1080.
Since, our main aim was to reduce the model size so that
we could save as much bandwidth as possible we kept our
CNN model simple, without hampering the quality of the
colored video that we output. The results turned out to be
quite good for most of the videos. However, the videos in
which there were drastic changes from one shot to another,
our network was not able to produce that good results. We
observed that although some results were quite good, some
generated pictures tend to be low saturated, with the network
producing a grayish color where the original was brighter.

Table II shows some of our results. The varying colored
outputs of similar grayscale images has been clearly shown
in the output of Zhang et. al. model. The ground truth of the
last and the second last images have similar colors. However,
Zhang et. al. outputs an image with a pinkish shade in one



Grayscale Ground truth Zhang et.al Ours

[3]

[3]

[3]

[4]

[4]

[4]

[5]

[5]

[5]

TABLE II
RESULTS



Input Video
frame size

Input
Video duration

Time taken
to output
colored video

Size of
model

Bandwidth
saved

Percentage
Bandwidth
saved

256X256 (24 bit) 1 minute ∼4 minutes 30MB 195MB 57.78%
256X256 (24 bit) 15 minutes ∼6 minutes 30MB 3345MB 66.07%
720X1280 (24 bit) 15 minutes ∼6 hours 45MB 46.3GB 66.6%

TABLE III
RESULTS OF BANDWIDTH SAVED IN VARIOUS VIDEOS THROUGH OUR APPROACH

case and an image with a reddish tint in the other. We easily
handle this anomaly since we already have a knowledge of
the colors that have been used in the video, that we extract
through the keyframes.
In Table III we have shown the bandwidth that is saved
through our approach. The small size of the trained model
helps in accomplishing our task to a great extent.

V. CONCLUSION AND FUTURE WORK

In this paper, we devised a new approach to save band-
width to upto three times while transferring colored videos
without losing data or hampering the quality of the video.
Usual compression algorithms are lossy, hence lose data
while compressing videos. Lossy compressions are irre-
versible that use inaccurate estimations and discard some
data to present the content. They are performed to decrease
the size of data for storing, handling, and transmitting
content. However the approach that we propose isn’t irre-
versible in the sense that the quality of the output video
is not hampered. We also tackled the problem of varying
colored outputs of a single grayscale frame of a video when
tested with different colorization models, by using some
colored keyframes of the video as reference images. Having
a knowledge of the colors that have been used in a video
will help in colorizing the rest of the frames of the video.

Our future work will focus on reducing the time taken to
output the colored video through our model without trading
off with the quality. We will also work on colorizing videos
where drastic changes occur from one shot to another, in a
better way.

REFERENCES

[1] F. Baldassarre, D. G. Morı́n, and L. Rodés-Guirao. Deep koalarization:
Image colorization using cnns and inception-resnet-v2. arXiv preprint
arXiv:1712.03400, 2017.

[2] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE transactions
on pattern analysis and machine intelligence, 17(8):790–799, 1995.

[3] https://www.youtube.com/watch?v=EWg52nptETc.
[4] https://www.youtube.com/watch?v=EWg52nptETc.
[5] https://www.youtube.com/watch?v=i5Q02YX2VTw.
[6] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be color!: joint

end-to-end learning of global and local image priors for automatic
image colorization with simultaneous classification. ACM Transactions
on Graphics (TOG), 35(4):110, 2016.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[8] G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations
for automatic colorization. In European Conference on Computer
Vision, pages 577–593. Springer, 2016.

[9] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Ried-
miller. Striving for simplicity: The all convolutional net. CoRR,
abs/1412.6806, 2014.

[10] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning.
In AAAI, volume 4, page 12, 2017.

[11] T. Welsh, M. Ashikhmin, and K. Mueller. Transferring color to
greyscale images. In ACM Transactions on Graphics (TOG), vol-
ume 21, pages 277–280. ACM, 2002.

[12] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In
European Conference on Computer Vision, pages 649–666. Springer,
2016.

[13] Y. Zhuang, Y. Rui, T. S. Huang, and S. Mehrotra. Adaptive key frame
extraction using unsupervised clustering. In Image Processing, 1998.
ICIP 98. Proceedings. 1998 International Conference on, volume 1,
pages 866–870. IEEE, 1998.


	I INTRODUCTION
	II Previous Work
	III Proposed Method
	III-A Keyframes Extraction
	III-B Training a Convolutional Neural Network

	IV Experiments and Results
	V Conclusion and Future Work
	References

