Skip to main content

Occlusion-Aware Skeleton Trajectory Representation for Abnormal Behavior Detection

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1212))

Abstract

Surveillance cameras are expected to play a large role in the development of ITS technologies. They can be used to detect abnormally behaving individuals which can then be reported to drivers nearby. There are multiple works that tackle the problem of abnormal behavior detection. However, most of these works make use of appearance features which have redundant information and are susceptible to noise. While there are also works that make use of pose skeleton representation, they do not consider well how to handle cases with occlusions, which can occur due to the simple reason of pedestrian orientation preventing some joints from appearing in the frame clearly. In this paper, we propose a skeleton trajectory representation that enables handling of occlusions. We also propose a framework for pedestrian abnormal behavior detection that uses the proposed representation and detect relatively hard-to-notice anomalies such as drunk walking. The experiments we conducted show that our method outperforms other representation methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bera, A., Kim, S., Manocha, D.: Realtime anomaly detection using trajectory-level crowd behavior learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 50–57 (2016)

    Google Scholar 

  2. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  3. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2334–2343 (2017)

    Google Scholar 

  4. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–742 (2016)

    Google Scholar 

  5. Hinami, R., Mei, T., Satoh, S.: Joint detection and recounting of abnormal events by learning deep generic knowledge. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3619–3627 (2017)

    Google Scholar 

  6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  7. Morais, R., Le, V., Tran, T., Saha, B., Mansour, M., Venkatesh, S.: Learning regularity in skeleton trajectories for anomaly detection in videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11996–12004 (2019)

    Google Scholar 

  8. Papandreou, G., Zhu, T., Chen, L.-C., Gidaris, S., Tompson, J., Murphy, K.: PersonLab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 282–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_17

    Chapter  Google Scholar 

  9. Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1544–1554 (2008)

    Article  Google Scholar 

  10. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  11. Sakurada, M. Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2nd Workshop on Machine Learning for Sensory Data Analysis, 4 p. (2014)

    Google Scholar 

  12. Sekii, T.: Pose proposal networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 350–366. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_21

    Chapter  Google Scholar 

  13. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6479–6488 (2018)

    Google Scholar 

  14. Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min. ASA Data Sci. J. 5(5), 363–387 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

Parts of this research were supported by MEXT, Grants-in-Aid for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Temuroglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Temuroglu, O. et al. (2020). Occlusion-Aware Skeleton Trajectory Representation for Abnormal Behavior Detection. In: Ohyama, W., Jung, S. (eds) Frontiers of Computer Vision. IW-FCV 2020. Communications in Computer and Information Science, vol 1212. Springer, Singapore. https://doi.org/10.1007/978-981-15-4818-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4818-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4817-8

  • Online ISBN: 978-981-15-4818-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics