Skip to main content

Effect of Laplacian Smoothing Stochastic Gradient Descent with Angular Margin Softmax Loss on Face Recognition

  • Conference paper
  • First Online:
Intelligent Technologies and Applications (INTAP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1198))

Included in the following conference series:

Abstract

An important task in deep learning for face recognition is to use proper loss functions and optimization technique. Several loss functions have been proposed using stochastic gradient descent for this task. The main purpose of this work is to propose the strategy to use the Laplacian smoothing stochastic gradient descent with combination of multiplicative angular margin to enhance the performance of angularly discriminative features of angular margin softmax loss for face recognition. The model is trained on a most popular face recognition dataset CASIA-WebFace and it achieves the state-of-the-art performance on several academic benchmark datasets such as Labeled Face in the Wild (LFW), YouTube Faces (YTF), VGGFace1 and VGGFace2. Our method achieves a new record accuracy of 99.54% on LFW dataset. On YTF dataset it achieves 95.53% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  2. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  3. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  4. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. Adv. Neural. Inf. Process. Syst. 27, 1988–1996 (2014)

    Google Scholar 

  5. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  6. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  7. Sun, Y., Liang, D., Wang, X., Tang, X.: DeepID3: face recognition with very deep neural networks. arXiv preprint arXiv:1502.00873 (2015)

  8. Wang, Z., He, K., Fu, Y., Feng, R., Jiang, Y.-G., Xue, X.: Multi-task deep neural network for joint face recognition and facial attribute prediction. In: ACM on International Conference on Multimedia Retrieval, New York, NY, USA (2017)

    Google Scholar 

  9. Hu, G., et al.: When face recognition meets with deep learning: an evaluation of convolutional neural networks for face recognition. In: IEEE International Conference on Computer Vision Workshop (ICCVW) (2015)

    Google Scholar 

  10. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2005)

    Google Scholar 

  11. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2006)

    Google Scholar 

  12. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: Feragen, A., Pelillo, M., Loog, M. (eds.) SIMBAD 2015. LNCS, vol. 9370, pp. 84–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24261-3_7

    Chapter  Google Scholar 

  13. Wang, J., et al.: Learning fine-grained image similarity with deep ranking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  14. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA (2016)

    Google Scholar 

  15. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)

  16. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition, Marseille (2008)

    Google Scholar 

  17. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)

    Google Scholar 

  18. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: 13th IEEE International Conference on Automatic Face Gesture Recognition (FG) (2018)

    Google Scholar 

  19. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23, 1499–1503 (2016)

    Article  Google Scholar 

  20. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  21. Zhang, X., Fang, Z., Wen, Y., Li, Z., Qiao, Y.: Range loss for deep face recognition with long-tailed training data. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  22. Deng, J., Zhou, Y., Zafeiriou, S.: Marginal loss for deep face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2017)

    Google Scholar 

  23. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Proceedings of the British Machine Vision Conference (BMVC) (2015)

    Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  25. Liu, J., Deng, Y., Bai, T., Huang, C.: Targeting ultimate accuracy: face recognition via deep embedding. arXiv preprint arXiv:1506.07310 (2015)

  26. Liu, W., et al.: Learning towards minimum hyperspherical energy. arXiv preprint arXiv:1805.09298 (2018)

  27. Osher, S., Wang, B., Yin, P., Luo, X., Pham, M., Lin, A.: Laplacian smoothing gradient descent. arXiv preprint arXiv:1806.06317 (2018)

  28. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for deep learning: generalization gap and sharp minima. arXiv preprint arXiv:1609.04836 (2016)

  29. Chaudhari, P., Oberman, A., Osher, S., Soatto, S., Carlier, G.: Deep relaxation: partial differential equations for optimizing deep neural networks. Res. Math. Sci. 5(3), 1–30 (2018). https://doi.org/10.1007/s40687-018-0148-y

    Article  MathSciNet  MATH  Google Scholar 

  30. Chaudhari, P., et al.: Entropy-SGD: biasing gradient descent into wide valleys. arXiv preprint arXiv:1611.01838 (2016)

  31. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction. In: Advances in Neural Information Processing Systems (2013)

    Google Scholar 

  32. Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives. In Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  33. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning (2017)

    Google Scholar 

  34. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  35. Chen, D., Cao, X., Wen, F., Sun, J.: Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification. In: CVPR, pp. 3025–3032 (2013)

    Google Scholar 

  36. Cao, Z., Yin, Q., Tang, X., Sun, J.: Face recognition with learning-based descriptor. In: CVPR, pp. 2707–2714. IEEE (2010)

    Google Scholar 

  37. Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  Google Scholar 

  38. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  39. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Machine Intell. 28(12), 2037–2041 (2006)

    Article  Google Scholar 

  40. Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11(4), 467–476 (2002)

    Article  Google Scholar 

  41. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Machine Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  42. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.-J.: Face recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Iqbal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iqbal, M., Rehman, M.A., Iqbal, N., Iqbal, Z. (2020). Effect of Laplacian Smoothing Stochastic Gradient Descent with Angular Margin Softmax Loss on Face Recognition. In: Bajwa, I., Sibalija, T., Jawawi, D. (eds) Intelligent Technologies and Applications. INTAP 2019. Communications in Computer and Information Science, vol 1198. Springer, Singapore. https://doi.org/10.1007/978-981-15-5232-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5232-8_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5231-1

  • Online ISBN: 978-981-15-5232-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics