Skip to main content

Potential of Robust Face Recognition from Real-Time CCTV Video Stream for Biometric Attendance Using Convolutional Neural Network

  • Conference paper
  • First Online:
Intelligent Data Engineering and Analytics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1177))

Abstract

Face recognition is one of the most bothersome research issues in security systems due to various challenges like constantly changing poses, facial expressions, lighting conditions, and resolution of the image. The wellness of the recognition technique firmly depends on the accuracy of extracted features and also on the ability to deal with the low-resolution face images. The mastery to learn accurate features from raw face images makes deep convolutional neural networks (DCNNs) a suitable option for facial recognition. The DCNNs utilizes Softmax for evaluating model accuracy of a category for associate degree input image to create a forecast. However, the Softmax probabilities do not depict the real representation of model accuracy. The main aim of this paper is to maximize the accuracy of face recognition systems by minimizing false positives. The complete procedure of building a face recognition prototype is defined very well. This prototype consists of many vital steps built using most advanced methods: CNN cascade for detection of face and HOG for generating face embeddings. The primary aim of this analysis was the sensible use of those developing deep learning techniques for face recognition work, because of the reason that CNNs give almost accurate results for huge datasets. The proposed face recognition prototype can be used together with another system by making some minor changes or without making any changes as an assisting or a primary element for surveillance functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. British government, CCTV initiative. http://www.crimereduction.gov.uk/cctvminisite4.htm

  2. Brickstream Corp. http://www.brickstream.com

  3. Murphy, T.M., Broussard, R., Schultz, R., Rakvic, R., Ngo, H.: Face detection with a Viola–Jones based hybrid network. Biometr. IET 6(3), 200–210 (2017)

    Google Scholar 

  4. Hjelmas, E., Low, B.K.: Face detection: a survey. Comput. Vis. Image Underst. 83, 236–237

    Google Scholar 

  5. Rowly, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 23–38

    Google Scholar 

  6. Kyrkou, C., Bouganis, C.-S., Theocharides, T., Polycarpou, M.M.: Embedded hardware-efficient real-time classification with cascade support vector machines. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 99–112 (2016). https://doi.org/10.1109/tnnls.2015.2428738

    Article  MathSciNet  Google Scholar 

  7. Yang, M.-H., Roth, D., Ahuja, N.: A SNoW-based face detector. Adv. Neural Inf. Process. Syst. 12, 855–861

    Google Scholar 

  8. Schneiderman, H., Kanade, T.: A Statistical Method for 3D Object Detection Applied to Faces and Cars

    Google Scholar 

  9. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: Proceedings of the CVPR97, pp. 93–199

    Google Scholar 

  10. Mohan, A., Poapageorgiou, C., Poggio, T.: Example-based object detection in images by components. IEEE Trans. PAMI 23(4), 349–361

    Google Scholar 

  11. Arsenovic, M., Sladojevic, S., Anderla, A., Stefanovic, D.: FaceTime—deep learning-based face recognition attendance system. In: 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY) (2017). https://doi.org/10.1109/sisy.2017.8080587

  12. Punnappurath, A., Rajagopalan, A.N., Taheri, S., Chellappa, R., Seetharaman, G.: Face recognition across non-uniform motion blur, illumination, and pose. IEEE Trans. Image Process. 24(7), 2067–2082 (2015). https://doi.org/10.1109/tip.2015.2412379

    Article  MathSciNet  MATH  Google Scholar 

  13. Moeini, A., Moeini, H.: Real-world and rapid face recognition toward pose and expression variations via feature library matrix. IEEE Trans. Inf. Forensics Secur. 10(5), 969–984 (2015). https://doi.org/10.1109/tifs.2015.2393553

    Article  Google Scholar 

  14. Ge, S., Zhao, S., Li, C., Li, J.: Low-resolution face recognition in the wild via selective knowledge distillation. IEEE Trans. Image Process. 1–1 (2018). https://doi.org/10.1109/tip.2018.2883743

  15. Ding, C., Chang, X., Tao, D.: Multi-task pose-invariant face recognition. IEEE Trans. Image Process. 24(3), 980–993 (2015). https://doi.org/10.1109/tip.2015.2390959

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, D., Zhou, H., Lam, K.-M.: High-resolution face verification using pore-scale facial features. IEEE Trans. Image Process. 24(8), 2317–2327 (2015). https://doi.org/10.1109/tip.2015.2412374

    Article  MathSciNet  MATH  Google Scholar 

  17. Kang, S., Lee, J., Bong, K., Kim, C., Kim, Y., Yoo, H.-J.: Low-power scalable 3-D face frontalization processor for CNN-based face recognition in mobile devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 1–1 (2018). https://doi.org/10.1109/jetcas.2018.2845663

  18. Face detection with different scales based on faster R-CNN (2018). IEEE Trans. Cybern. 1–12. https://doi.org/10.1109/tcyb.2018.2859482

  19. Liu, L., Xiong, C., Zhang, H., Niu, Z., Wang, M., Yan, S.: Deep aging face verification with large gaps. IEEE Trans. Multimedia 18(1), 64–75 (2016). https://doi.org/10.1109/tmm.2015.2500730

    Article  Google Scholar 

  20. Shen, Y., Yang, M., Wei, B., Chou, C.T., Hu, W.: Learn to recognise: exploring priors of sparse face recognition on smartphones. IEEE Trans. Mob. Comput. 16(6), 1705–1717 (2017). https://doi.org/10.1109/tmc.2016.2593919

    Article  Google Scholar 

  21. Xu, W., Shen, Y., Bergmann, N., Hu, W.: Sensor-assisted multi-view face recognition system on smart glass. IEEE Trans. Mob. Comput. 17(1), 197–210 (2018). https://doi.org/10.1109/tmc.2017.2702634

    Article  Google Scholar 

  22. Li, Z., Gong, D., Li, X., Tao, D.: Aging face recognition: a hierarchical learning model based on local patterns selection. IEEE Trans. Image Process. 25(5), 2146–2154 (2016). https://doi.org/10.1109/tip.2016.2535284

    Article  MathSciNet  MATH  Google Scholar 

  23. Marengoni, M., Stringhini, D.: High level computer vision using OpenCV. In: 2011 24th SIBGRAPI Conference on Graphics, Patterns, and Images Tutorials (2011). https://doi.org/10.1109/sibgrapi-t.2011.11

  24. Sharma, S., Shanmugasundaram, K., Ramasamy, S.K.: FAREC—CNN based efficient face recognition technique using Dlib. In: 2016 International Conference on Advanced Communication Control and Computing Technologies (ICACCCT) (2016). https://doi.org/10.1109/icaccct.2016.7831628

  25. Abuzneid, M.A., Mahmood, A.: Enhanced human face recognition using LBPH descriptor, multi-KNN, and back-propagation neural network. IEEE Access 6, 20641–20651 (2018). https://doi.org/10.1109/access.2018.2825310

  26. Lei, L., Kim, S., Park, W., Kim, D., Ko, S.: Eigen directional bit-planes for robust face recognition. IEEE Trans. Consum. Electron. 60(4), 702–709 (2014). https://doi.org/10.1109/tce.2014.7027346

    Article  Google Scholar 

  27. Xiao, X., Zhou, Y.: Two-dimensional quaternion PCA and sparse PCA. IEEE Trans. Neural Netw. Learn. Syst. 1–15 (2018). https://doi.org/10.1109/tnnls.2018.2872541

  28. Liu, C., Liu, C., Chang, F.: Cascaded split-level colour Haar-like features for object detection. Electron. Lett. 51(25), 2106–2107 (2015). https://doi.org/10.1049/el.2015.2092

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prajwal Chinchmalatpure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Limkar, S., Hunashimarad, S., Chinchmalatpure, P., Baj, A., Patil, R. (2021). Potential of Robust Face Recognition from Real-Time CCTV Video Stream for Biometric Attendance Using Convolutional Neural Network. In: Satapathy, S., Zhang, YD., Bhateja, V., Majhi, R. (eds) Intelligent Data Engineering and Analytics. Advances in Intelligent Systems and Computing, vol 1177. Springer, Singapore. https://doi.org/10.1007/978-981-15-5679-1_2

Download citation

Publish with us

Policies and ethics