Skip to main content

Extraction of Leukocyte Section from Digital Microscopy Picture with Image Processing Method

  • Conference paper
  • First Online:
Intelligent Data Engineering and Analytics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1177))

  • 624 Accesses

Abstract

Appraisal of leukocyte sections is essential to predict the disease in humans. The increase in the leukocyte indirectly represents the disease in humans. This work proposes a methodology to extract the various leukocyte segments from the Microscopic Blood Smear (MBS) image with better accuracy. This work implemented an entropy assisted thresholding and morphology based segmentation to mine the segment. The threshold is executed with the Kapur’s function with a Social Group Optimization (SGO). The mining of leukocyte is done with morphological extraction. The mined segment is then compared against the ground-truth (GT) and the performance metrics are then computed. Further, a confusion matrix is also constructed to confirm the performance of the proposed technique. In this analysis, the benchmark images of Leukocyte Images for Segmentation and Classification (LISC) is considered and the attained outcomes are authenticated with existing similar results in literature. The experimental outcome confirms that, proposed technique is efficient in extracting all the five leukocytes from the LISC catalog with improved image quality parameters. This confirms that, proposed system can be used to examine the clinical rank pictures in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raja, N.S.M., Fernandes, S.L. Dey, N., Satapathy, S.C., Rajinikanth, V.: Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient. Intell. Humaniz. Comput. 1–12 (2018). https://doi.org/10.1007/s12652-018-0854-8

  2. Rajinikanth, V., Dey, N., Satapathy, S.C., Ashour, A.S.: An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model. Futur. Gener. Comput. Syst. 85, 160–172 (2018). https://doi.org/10.1016/j.future.2018.03.025

    Article  Google Scholar 

  3. Rezatofighi, S.H., Soltanian-Zadeh, H.: Automatic recognition of five types of white blood cells in peripheral blood. Comput. Med. Imaging Graph. 35(4), 333–343 (2011)

    Article  Google Scholar 

  4. Prinyakupt, J., Pluempitiwiriyawej, C.: Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers. BioMed. Eng. OnLine 14, 63 (2015). https://doi.org/10.1186/s12938-015-0037-1

    Article  Google Scholar 

  5. Raja, N.S.M., et al.: Segmentation of breast thermal images using Kapur’s entropy and hidden Markov random field. J. Med. Imag. Health Inf. 7(8), 1825–1829 (2017). https://doi.org/10.1166/jmihi.2017.2267

    Article  Google Scholar 

  6. LISC. http://users.cecs.anu.edu.au/~hrezatofighi/Data/Leukocyte%20Data.htm. Accessed on 11 Aug 2019

  7. Dey, N., Shi, F., Rajinikanth, V.: Leukocyte nuclei segmentation using entropy function and Chan-Vese approach. Inf. Technol. Intell. Transp. Syst. 314, 255–264 (2019). https://doi.org/10.3233/978-1-61499-939-3-255

    Article  Google Scholar 

  8. Raja, N.S.M., Arunmozhi, S., Lin, H., Dey, N., Rajinikanth, V.: A study on segmentation of leukocyte image with Shannon’s entropy. Histopathol. Image Anal. Med. Decis. Mak, 1–27 (2019). https://doi.org/10.4018/978-1-5225-6316-7.ch001

  9. Dey, N., Rajinikanth, V., Ashour, A.S., Tavares, J.M.R.S.: Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 10(2), 51 (2018). https://doi.org/10.3390/sym10020051

    Article  MATH  Google Scholar 

  10. Rajinikanth, V., Satapathy, S.C.: Segmentation of ischemic stroke lesion in brain MRI based on social group optimization and Fuzzy-Tsallis entropy. Arab. J. Sci. Eng. 43(8), 4365–4378 (2018). https://doi.org/10.1007/s13369-017-3053-6

    Article  Google Scholar 

  11. Rajinikanth, V., Fernandes, S.L., Bhushan, B., Sunder, N.R.: Segmentation and analysis of brain tumor using Tsallis entropy and regularised level set. Lecture Notes in Electrical Engineering, vol. 434, pp. 313–321 (2018)

    Google Scholar 

  12. Dey, N., et al.: Social-Group-Optimization based tumor evaluation tool for clinical brain MRI of Flair/diffusion-weighted modality. Biocybern. Biomed. Eng. 39(3), 843–856 (2019). https://doi.org/10.1016/j.bbe.2019.07.005

    Article  Google Scholar 

  13. Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vision. Graphics Image Process 29, 273–285 (1985)

    Google Scholar 

  14. Rajinikanth, V., Satapathy, S.C., Fernandes, S.L., Nachiappan, S: Entropy based segmentation of tumor from brain MR images—a study with teaching learning based optimization. Pattern Recognit. Lett. 94, 87–94 (2016). https://doi.org/10.1016/j.patrec.2017.05.028

  15. Fernandes, S.L., Rajinikanth, V., Kadry, S.: A hybrid framework to evaluate breast abnormality using infrared thermal images. IEEE Consum. Electron. Mag. 8(5), 31–36 (2019). https://doi.org/10.1109/MCE.2019.2923926

    Article  Google Scholar 

  16. Rajinikanth, V., Dey, N., Satapathy, S.C., Kamalanand, K.: Inspection of crop-weed image database using Kapur’s entropy and spider monkey optimization. Adv. Intell. Syst. Comput. 1048 (2019). https://doi.org/10.1007/978-981-15-0035-0_32

  17. Satapathy, S., Naik, A.: Social group optimization (SGO): a new population evolutionary optimization technique. Complex Intell. Syst. 2(3), 173–203 (2016)

    Article  Google Scholar 

  18. Naik, A., Satapathy, S.C., Ashour, A.S., Dey, N.: Social group optimization for global optimization of multimodal functions and data clustering problems. Neural Comput. Appl. 30(1), 271–287 (2016). https://doi.org/10.1007/s00521-016-2686-9

    Article  Google Scholar 

  19. Bhateja, V., Nigam, M., Bhadauria, A.S., Arya, A., Yu-Dong Zhang, Y-D.: Human visual system based optimized mathematical morphology approach for enhancement of brain MR images, J. Ambient. Intell. Humaniz. Comput. 1–9 (2019). https://doi.org/10.1007/s12652-019-01386-z

  20. Bhateja, V., Misra, M., Urooj, S.: Unsharp masking approaches for HVS based enhancement of mammographic masses: a comparative evaluation. Futur. Gener. Comput. Syst. 82, 176–189 (2018)

    Article  Google Scholar 

  21. Satapathy, S.C., El-Maleh, A., Bhateja, V.: Intelligent computing in multidisciplinary engineering applications. Arab. J. Sci. Eng. 43(8), 3861–3862 (2018)

    Article  Google Scholar 

  22. Wang, R., Wang, G.: Web text categorization based on statistical merging algorithm in big data environment. Int. J. Ambient Comput. Intell. (IJACI) 10(3), 17–32 (2019). https://doi.org/10.4018/IJACI.2019070102

    Article  Google Scholar 

  23. Ali, et al.: Adam deep learning with SOM for human sentiment classification. Int. J. Ambient Comput. Intell. (IJACI) 10(3), 92–116 (2019). https://doi.org/10.4018/IJACI.2019070106

    Article  Google Scholar 

  24. Yang, X., Jiang, X.: A hybrid active contour model based on new edge-stop functions for image segmentation. Int. J. Ambient Comput. Intell. (IJACI) 11(1), 87–98 (2020). https://doi.org/10.4018/IJACI.2020010105

    Article  Google Scholar 

  25. Acharya, U.R., et al.: Automated detection of Alzheimer’s disease using brain MRI images– a study with various feature extraction techniques. J. Med. Syst. 43, 302 (2019). https://doi.org/10.1007/s10916-019-1428-9

    Article  Google Scholar 

  26. Jahmunah, V., et al.: Automated detection of schizophrenia using nonlinear signal processing methods. Artif. Intell. Med. 100, 101698 (2019). https://doi.org/10.1016/j.artmed.2019.07.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajinikanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dellecta Jessy Rashmi, R., Rajinikanth, V., Lin, H., Satapathy, S.C. (2021). Extraction of Leukocyte Section from Digital Microscopy Picture with Image Processing Method. In: Satapathy, S., Zhang, YD., Bhateja, V., Majhi, R. (eds) Intelligent Data Engineering and Analytics. Advances in Intelligent Systems and Computing, vol 1177. Springer, Singapore. https://doi.org/10.1007/978-981-15-5679-1_64

Download citation

Publish with us

Policies and ethics