Skip to main content

Brain MRI Examination with Varied Modality Fusion and Chan-Vese Segmentation

  • Conference paper
  • First Online:
Book cover Intelligent Data Engineering and Analytics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1177))

  • 629 Accesses

Abstract

Newly, varied techniques are implemented to improve and mine the apprehensive segment from the brain MRI obtained with diverse modalities. This work executes an image-fusion practice to combine the MRIs of dissimilar modalities, to improve the correctness in the assessment task. A Principle-Component-Analysis (PCA) supported fusion is employed to enhance tumor of brain MRI. This work considers the 2D slices of BRATS-2015 image for the assessment. Later, the segmentation based on Chan-Vese is executed and its performance is evaluated against DRLS. A comparative investigation among tumor section and ground-truth (GT) is implemented and vital picture-likeliness constraints are computed. The result of this work is compared against DWT-PCA procedure accessible in literature, and the experimental results of this technique offered better results, which substantiate the superiority of PCA practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhateja, V., Nigam, M., Bhadauria, A.S., Arya, A., Yu-Dong Zhang, Y-D.: Human visual system based optimized mathematical morphology approach for enhancement of brain MR images. J. Ambient. Intell. Humaniz. Comput. 1–9 (2019). https://doi.org/10.1007/s12652-019

  2. Menze, B., Reyes, M., Leemput, K.V., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  3. Rajinikanth, V., Satapathy, S.C., Fernandes, S.L., Nachiappan, S.: Entropy based segmentation of tumor from brain MR images—a study with teaching learning based optimization. Pattern Recognit. Lett. 94, 87–94 (2016). https://doi.org/10.1016/j.patrec.2017.05.028

  4. Fernandes, S.L., et al.: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput. Appl. 1–12 (2019). https://doi.org/10.1007/s00521-019-04369-5

  5. Dey, N., et al.: Social-Group-Optimization based tumor evaluation tool for clinical brain MRI of flair/diffusion-weighted modality. Biocybern. Biomed. Eng. 39(3), 843–856 (2019). https://doi.org/10.1016/j.bbe.2019.07.005

    Article  Google Scholar 

  6. Jahmunah, V., et al.: Automated detection of schizophrenia using nonlinear signal processing methods. Artif. Int. Med. 100, 101698 (2019). https://doi.org/10.1016/j.artmed.2019.07.006

    Article  Google Scholar 

  7. Rajinikanth, V., Fernandes, S.L., Bhushan, B., Sunder, N.R.: Segmentation and analysis of brain tumor using Tsallis entropy and regularised level set. Lecture Notes in Electrical Engineering, vol. 434, pp. 313–321 (2018)

    Google Scholar 

  8. Rajinikanth, V., Dey, N., Satapathy, S.C., Ashour, A.S.: An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model. Futur. Gener. Comput. Syst. 85, 160–172 (2018). https://doi.org/10.1016/j.future.2018.03.025

    Article  Google Scholar 

  9. Raja, N.S.M., Fernandes, S.L. Dey, N., Satapathy, S.C., Rajinikanth, V.: Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient. Intell. Humaniz. Comput. 1–12 (2018). https://doi.org/10.1007/s12652-018-0854-8

  10. Rajinikanth, V., Satapathy, S.C., Dey, N., Vijayarajan, R.: DWT-PCA image fusion technique to improve segmentation accuracy in brain tumor analysis. LNEE 471, 453–462 (2018). https://doi.org/10.1007/978-981-10-7329-8_46

    Article  Google Scholar 

  11. Farahani, K., Menze, B., Reyes, M.: Multimodal Brain Tumor Segmentation (BRATS 2013) (2013). http://martinos.org/qtim/miccai2013/

  12. Vijayarajan, R., Muttan, S.: Local principal component averaging image fusion, Int. J. Imaging Robot. 13(2), 94–103 (2014)

    Google Scholar 

  13. Vijayarajan, R., Muttan, S.: Fuzzy C-means clustering based principal component averaging fusion. Int. J. Fuzzy Syst. 16(2), 153–159 (2014)

    Google Scholar 

  14. Vijayarajan, R., Muttan, S.: Iterative block level principal component averaging medical image fusion. Optik-Int. J. Light Electron Opt. 125(17), 4751–4757 (2014)

    Google Scholar 

  15. Srivastava, A., Bhateja, V., Moin, A.: Combination of PCA and contourlets for multispectral image fusion. Adv. Intell. Syst. Comput. 469, 577–585 (2017). https://doi.org/10.1007/978-981-10-1678-3_55

    Article  Google Scholar 

  16. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process 10(2), 266–277 (2001)

    Article  Google Scholar 

  17. Rajinikanth, V., Dey, N., Kumar, R., Panneerselvam, J., Raja, N.S.M.: Fetal head periphery extraction from ultrasound image using Jaya algorithm and Chan-Vese segmentation. Procedia Comput. Sci. 152, 66–73 (2019). https://doi.org/10.1016/j.procs.2019.05.028

    Article  Google Scholar 

  18. Manic, K.S., et al.: An approach to examine brain tumor based on Kapur’s entropy and Chan-Vese algorithm. AISC 797, 901–909 (2019). https://doi.org/10.1007/978-981-13-1165-9_81

    Article  Google Scholar 

  19. Kowsalya, N., et al.: Skin-melanoma evaluation with Tsallis’s thresholding and Chan-Vese approach. In. IEEE International Conference on System, Computation, Automation and Networking (ICSCA), pp.1–5. IEEE (2018). https://doi.org/10.1109/ICSCAN.2018.8541178

  20. Rajinikanth, V., Satapathy, S.C.: Segmentation of ischemic stroke lesion in brain MRI based on social group optimization and Fuzzy-Tsallis entropy. Arab. J. Sci. Eng. 43(8), 4365–4378 (2018). https://doi.org/10.1007/s13369-017-3053-6

    Article  Google Scholar 

  21. Satapathy, S.C., Rajinikanth, V.: Jaya algorithm guided procedure to segment tumor from brain MRI. J. Optim. 2018, 12 (2018). https://doi.org/10.1155/2018/3738049

    Article  MATH  Google Scholar 

  22. Fernandes, S.L., Rajinikanth, V., Kadry, S.: A hybrid framework to evaluate breast abnormality using infrared thermal images. IEEE Consum. Electron. Mag. 8(5), 31–36 (2019). https://doi.org/10.1109/MCE.2019.2923926

    Article  Google Scholar 

  23. Bhandary, A., et al.: Deep-learning framework to detect lung abnormality–a study with chest X-ray and lung CT scan images. Pattern Recogn. Lett. (2019). https://doi.org/10.1016/j.patrec.2019.11.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajinikanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abirami, D., Shalini, N., Rajinikanth, V., Lin, H., Rao, V.S. (2021). Brain MRI Examination with Varied Modality Fusion and Chan-Vese Segmentation. In: Satapathy, S., Zhang, YD., Bhateja, V., Majhi, R. (eds) Intelligent Data Engineering and Analytics. Advances in Intelligent Systems and Computing, vol 1177. Springer, Singapore. https://doi.org/10.1007/978-981-15-5679-1_65

Download citation

Publish with us

Policies and ethics