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Abstract. Neural Machine Translation (NMT) can be used to generate fluent
output. As such, language models have been investigated for incorporation with
NMT. In prior investigations, two models have been used: a translation model
and a language model. The translation model’s predictions are weighted by the
language model with a hand-crafted ratio in advance. However, these approaches
fail to adopt the language model weighting with regard to the translation history.
In another line of approach, language model prediction is incorporated into the
translation model by jointly considering source and target information. However,
this line of approach is limited because it largely ignores the adequacy of the
translation output.

Accordingly, this work employs two mechanisms, the translation model and the
language model, with an attentive architecture to the language model as an auxil-
iary element of the translation model. Compared with previous work in English—
Japanese machine translation using a language model, the experimental results
obtained with the proposed Dynamic Fusion mechanism improve BLEU and
Rank-based Intuitive Bilingual Evaluation Scores (RIBES) scores. Additionally,
in the analyses of the attention and predictivity of the language model, the Dy-
namic Fusion mechanism allows predictive language modeling that conforms to
the appropriate grammatical structure.

Keywords: Language model - Neural machine translation - Attention mecha-
nism

1 Introduction

With the introduction of deep neural networks to applications in machine translation,
more fluent outputs have been achieved with neural machine translation (NMT) than
with statistical machine translation [[17]. However, a fluent NMT output requires a large
parallel corpus, which is difficult to prepare. Therefore, several studies have attempted
to improve fluency in NMT without the use of a large parallel corpus.

To overcome the data-acquisition bottleneck, the use of a monolingual corpus has
been explored. A monolingual corpus can be collected relatively easily, and has been
known to contribute to improved statistical machine translation [2]. Various attempts to
employ a monolingual corpus have involved the following: pre-training of a translation
model [12], initialization of distributed word representation [4411]], and construction of
a pseudo-parallel corpus by back-translation [14].



Here, we focus on a language modeling approach [3U16]]. Although recent efforts in
NMT tend to output fluent sentences, it is difficult to reflect the linguistic properties of
the target language, as only the source information is taken into consideration when per-
forming translation [13]]. Additionally, language models are useful in that they contain
target information that results in fluent output and can make predictions even if they do
not know the source sentence. In previous works utilizing a language model for NMT,
both the language model and the conventional translation model have been prepared,
wherein the final translation is performed by weighting both models. In the Shallow
Fusion mechanism [3]], the output of the translation and language models are weighted
at a fixed ratio. In the Cold Fusion mechanism [15]], a gate function is created to dynam-
ically determine the weight of the language model considering the translation model. In
the Simple Fusion mechanism [[16]], outputs of both models are treated equally, whereas
normalization steps vary.

In this research, we propose a “Dynamic Fusion” mechanism that predicts output
words by attending to the language model. We hypothesize that each model should
make predictions according to only the information available to the model itself; the in-
formation available to the translation model should not be referenced before prediction.
In the proposed mechanism, a translation model is fused with a language model through
the incorporation of word-prediction probability according to the attention. However,
the models retain predictions independent of one another. Based on the weight of the
attention, we analyze the predictivity of the language model and its influence on trans-
lation.

The main contributions of this paper are as follows:

We propose an attentional language model that effectively introduces a language

model to NMT.

— We show that fluent and adequate output can be achieved with a language model in
English-Japanese translation.

— We show that Dynamic Fusion significantly improves translation accuracy in a re-
alistic setting.

— Dynamic Fusion’s ability to improve translation is analyzed with respect to the

weight of the attention.

2 Previous works

2.1 Shallow Fusion

Gulcehre et al. [3] proposed Shallow Fusion, which translates a source sentence ac-
cording to the predictions of both a translation model and a language model. In this
mechanism, a monolingual corpus is used to learn the language model in advance. The
translation model is improved through the introduction of the knowledge of the target
language.

In Shallow Fusion, a target word g is predicted as follows:

§ = argmax log Prym(y|x) + Alog Poyv(y) (1)
Y



where x is an input of the source language, Py (y|x) is the word-prediction probabil-
ity according to the translation model, and Py (y) is the word prediction probability
according to the language model. Here, A is a manually-determined hyper-parameter
that determines the rate at which the language model is considered.

2.2 Cold Fusion

In addition to Shallow Fusion, Gulcehre et al. [3] proposed Deep Fusion as a mechanism
that could simultaneously learn a translation model and a language model. Sriram et al.
[[LS]] extended Deep Fusion to Cold Fusion to pass information on a translation model
for the prediction of a language model.

In this mechanism, a gating function is introduced that dynamically determines
the weight, taking into consideration both a translation model and a language model.
Therein, the language model predicts target words by using information from the trans-
lation model. Accuracy and fluency are improved through the joint learning of both
models.

In Cold Fusion, a target word  is predicted as follows:

him = WimSim(y) 2
9 = Waate[STM(Y[X); hr] (3)
B = [Stm(y[x); g - hrm] 4
Scold = Woutputh’ 5
§ = argmax softmax(Sco1d) 6)

y

where both Sty (y|x) and Spam(y) are word-prediction logitsﬂ with the translation
model and the language model, respectively; g is a function that determines the rate
at which the language model is considered; Wi ([h] X |V]), Waate (2|h| X |h]), and
Woutput (2|h] x |V]) are the weights of the neural networks; and [a; b] is the concate-
nation of vectors a and b.

2.3 Simple Fusion

Stahlberg et al. [16] proposed Simple Fusion, which simplifies Cold Fusion. Unlike
Cold Fusion, Simple Fusion does not use a translation model to predict words output
by a language model.

For Simple Fusion, two similar methods were proposed: POSTNORM (7)) and PRENORM
(8). In POSTNORM and PRENORM, a target word § is predicted as follows:

§ = argmax softmax(softmax(Stm(y|x)) - PLm(y)) )
y

§ = argmax softmax(Stm(y|x) + log PLm(y)) 8)
y

where Sty (y|x) denotes the word prediction logits with the translation model and
Pr(y) denotes the word prediction probability according to the language model.

! A logit is a probability projection layer without softmax.
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Fig. 1. Dynamic Fusion mechanism.

In POSTNORM, the output probability of the language model is multiplied by the
output probability of the translation model, wherein both models are treated according
to the same scale.

In PRENORM, the log probability of the language model and the unnormalized pre-
diction of the translation model are summed, wherein the language and translation mod-
els are treated with different scales.

Though the Simple Fusion model is relatively simple, it achieves a higher BLEU
score compared to other methods that utilize language models.

3 Dynamic Fusion

An attentional language model called “Dynamic Fusion,” is proposed in this paper. In
the Shallow Fusion and Simple Fusion mechanisms, information from the language
model is considered with fixed weights. However, translation requires that source in-
formation be retained, such that the consideration ratios should be adjusted from token
to token. Thus, both models should not be mixed with fixed weights. The Cold Fusion
mechanism dynamically determines the weights of mix-in; however, the Cold Fusion
mechanism passes information from the translation model to the language model before
prediction, and the language model thus does not make its own prediction.
Furthermore, in the previous research, it was necessary to make the vocabularies
of the translation model and language model identical because the final softmax op-
eration is performed in the word vocabulary dimension. However, since the proposed
mechanism mixes a language model as an attention, the vocabularies of the transla-
tion model and language model do not have to be completely consistent, and different



word-segmentation strategies and subword units can be used. Therefore, the proposed
mechanism allows the use of a language model prepared in advance.

In the proposed mechanism, the language model serves as auxiliary information for
prediction. Thus, the language model is utilized independently of the translation model.
Unlike Cold Fusion, this method uses a language model’s prediction score multiplied
by word attention.

First, the word-prediction probability of the language model P (y) is represented
as follows:

Pryv(y; y = word) = softmax(Stm(y)) 9)

Next, hidden layers of the translation model attending to the language model hry are
represented as follows:

exp(e£ordSTM (y|X))

Oword = (10)
ZWOrdEV exp(egordSTM (y|X)))
Cword = Cword€word (1 1)
CLM = Y Cwora - PLa(y;y = word) (12)
word
hrm = [STm(y[%); cLm] (13)
Satrn = Whtm (14)

where eyorq 18 the embedding of a word, cyorq 1S the conventional word attention for
each word, cr, is the word attention’s hidden state for the proposed Dynamic Fusion,
and W (2]h| x V) is a weight matrix of neural networks. In Equation , cL,M con-
siders the language model by multiplying Py (y;y = word) with a word attention.
In this mechanism, the prediction of the language model only has access to the target
information up to the word currently being predicted. Additionally, the language model
and translation model can be made independent by using the conventional attention
mechanism.

Finally, a target word g is predicted as follows:

9 = argmax softmax(SaTTN) (15)
y

A diagram of this mechanism is shown in Figure[l] wherein the language model is
used for the translation mechanism by considering the attention obtained from both the
translation model and language model.

The training procedure of the proposed mechanism follows that of Simple Fusion
and is performed as follows:

1. A language model is trained with a monolingual corpus.
2. The translation model and word attention to the language model are learned by
fixing the parameters of the language model.



Table 1. Corpus details. Table 2. Experimental setting.

# maximum setting
# sentences —
token Pre training epoch 15 epoch
Language model Maximum training epoch 100 epoch
(minoinguan 1,909,981 60 Optimization AdaGrad
Train (parallel) 827,188 60 Training rate 0.01
Dev (parallel) 1,790 Embed size 512
Test (parallel) 1,812 Hidden size 512
Batch size 128
Vocabulary size (w/o BPE) 30,000
# BPE operation 16,000

4 Experiment

Here, the conventional attentional NMT [1L6] and Simple Fusion models (POSTNORM,
PRENORM) were prepared as baseline methods for comparison with the proposed Dy-
namic Fusion model. We performed English-to-Japanese translation. Using this, the
translation performance of the proposed model was evaluated by taking the average of
two runs with BLEU [10] and Rank-based Intuitive Bilingual Evaluation Score (RIBES)
[5]. In addition, a significant difference test was performed using TravatarE]with 10,000
bootstrap resampling. We performed an additional experiment on Japanese-to-English
translation. The details of the setting are the same as in English-to-Japanese translation,
except that we only conducted the experiment once and did not perform a statistical
significance test.

The experiment uses two types of corpora: one for a translation model and the other
for a language model. Thus, training data of the Asian Scientific Paper Excerpt Corpus
(ASPEC) [9]] are divided into two parts: a parallel corpus and a monolingual corpus.
The parallel corpus, for translation, is composed of one million sentences with a high
confidence of sentence alignment from the training data. The monolingual corpus, for
language models, is composed of two million sentences from the target side of the
training data that are not used in the parallel corpus. Japanese sentences were tokenized
by the morphological analyzer MeCab f’| IPADic), and English sentences were prepro-
cessed by Moses E] (tokenizer, truecaser). We used development and evaluation set on
the official partitioning of ASPEC as summarized in Table Vocabulary is determined
using only the parallel corpus. For example, words existing only in the monolingual
corpus are treated as unknown words at testing, even if they frequently appear in the
monolingual corpus to train the language model. Additionally, experiments have been
conducted with and without Byte Pair Encoding (BPE) [7]. BPE was performed on the
source side and target side separately.

The in-house implementation [8]] of the NMT model proposed by Bahdanau et al.
[[L] and Luong et al. [|6] is used as the baseline model; all the other methods were created

2 http://www.phontron.com/travatar/evaluation.html

3 https://github.com/taku910/mecab

* http://www.statmt.org/moses/

> We exclude sentences whose number of tokens with more than 60 tokens in training.



Table 3. Results of English-Japanese translation. (Average of 2 runs.)

Vocabulary TM  W/0 BPE w/ BPE w/ BPE
WY IM  w/o BPE w/ BPE w/o BPE
BLEU RIBES BLEU RIBES|BLEU RIBES

Baseline 31.28 80.78 32.35 81.17 |32.35 81.17
PosTNorRM  31.01 80.77 3243 8097 | N/A N/A
PRENORM  31.61 80.78 32.69 81.24 | NJA N/A

Dynamic Fusion 31.84* 81.13* 33.22* 81.54*%|33.05* 81.40*

Table 4. Results of Japanese—English translation. (Single run.)

Vocabulary TM  W/o BPE w/ BPE w/ BPE
YIM  wioBPE w/ BPE w/o BPE
BLEU RIBES BLEU RIBES|BLEU RIBES

Baseline 22.55 73.53 22.64 73.45(22.64 7345
PosTNORM  21.47 73.21 22.09 72777 | NJA N/A
PRENORM  22.17 73.60 22.80 73.51 | N/A N/A

Dynamic Fusion 22.81 73.70 23.41 73.92 |22.97 73.45

based on this baseline. For comparison, settings are unified in all experiments (Table2)).
In the pre-training process, only the language model is learned; the baseline performs
no pre-training, as it does not have access to the language model.

5 Discussion

5.1 Quantitative analysis

The BLEU and RIBES scores results are listed in Table [3|(English-Japanese) and Table
H] (Japanese—English). In both scores, we observed similar tendencies with and without
BPE. Compared with the baseline model and the Simple Fusion model, Dynamic Fusion
yielded improved results in terms of BLEU and RIBES scores. However, between the
baseline model and Simple Fusion, PRENORM improved but POSTNORM was equal or
worse. Compared with PRENORM, Dynamic Fusion has improved BLEU and RIBES
scores. Accordingly, the improvement of the proposed method is notable, and the use
of attention yields better scores.

In the English—Japanese translation, it was also confirmed that BLEU and RIBES
were improved by using a language model. RIBES was improved for the translation
with Dynamic Fusion, suggesting that the proposed approach outputs adequate sen-
tences.

The proposed method has statistically significant differences (p < 0.05) in BLEU
and RIBES scores compared to the baseline. There was no significant difference be-
tween baseline and Simple Fusion, as well as between Simple Fusion and the proposed
method.

In addition, we conducted additional experiments in a more realistic setting. We
experimented with the translation model in which BPE was performed, whereas the



language model was trained on a raw corpus without BPEﬂ It was found that the trans-
lation scores were improved as compared to the baseline model with BPE.

5.2 Qualitative analysis

Examples of the output of each model are giiven in Tables[5]and [6]

In Table[5] compared with the baseline, the fluency of PRENORM and Dynamic Fu-
sion resulted in improved translation. Additionally, it can be seen that the attentional
language model provides a more natural translation of the inanimate subject in the
source sentence. Unlike in English, inanimate subjects are not often used in Japanese.
Thus, literal translations of an inanimate subject sounds unnatural to native Japanese
speakers. However, POSTNORM translates “fif & (dose)” into “FH & (capacity)” ,
which reduces adequacy.

PRENORM in Table [6] appears as a plain and fluent output. However, neither of
the Simple Fusion models can correctly translate the source sentence in comparison
with the baseline. In contrast, with Dynamic Fusion, the content of the source sentence
is translated more accurately than in the reference translation; thus, without loss of
adequacy, Dynamic Fusion maintains the same level of fluency.

This shows that the use of a language model contributes to the improvement of
output fluency. Additionally, Dynamic Fusion maintains relatively superior adequacy.

In Japanese—English translation, not only our proposed method but also other lan-
guage models can cope with voice changes and inversion such as in Table [/} The use
of active voice in Japanese where its counterpart is using passive voice is a common
way of writing in Japanese papers [[18]], and this example shows an improvement using
a language model.

5.3 Influence of language model

Table [§] shows an example wherein the language model compensates for the adequacy.
In general, if there is a spelling error exists in the source sentence, a proper translation
may not be performed owing to the unknown word. In this example, the word “tem-
perature” is misspelled as “temperture.” Thus, the baseline model translates the rele-
vant part but ignores the misspelled word. However, PRENORM and Dynamic Fusion
complemented the corresponding part appropriately thanks to the language model. The
proposed method was able to translate without losing adequacy. This result is attributed
to the language model’s ability to predict a fluent sentence.

® We did not perform an experiment with Simple Fusion because Simple Fusion requires the
vocabularies of both the language model and translation model to be identical.
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Table 7. Examples robust to changes in state.

Model Sentence (Output)
Source B BEEDMMIZHE L TWD Z DD o7,
it was found that the deformation gave effects to
Reference .. N
the pairing density distribution .

Baseline it was found that deformation was affected by the pair density distribution .
Simple Fusion it was found that deformation affects the logarithmic density distribution .
(POSTNORM)

Simple Fusion it was found that deformation affected the pair density distribution .
(PRENORM)

Dynamic Fusion it was found that the deformation affected the pair density distribution .

5.4 Influence of Dynamic Fusion

Fluency Excerpts from the output of Dynamic Fusion and word attention (top 5 words)
are presented in Table 9]

Except for the first toke the word attention includes the most likely outputs. For
example, if “start bracket ( ) ” is present in the sentence, there is a tendency to try
to close it with “end bracket (] )”. Additionally, it is not desirable to close brackets
with “¥§78 (power generation)”; therefore, it predicts that the subsequent word is “Fft
(plant)”. This indicates that the attentional language model can improve fluency while
maintaining the source information.

Regarding attention weights, there are cases in which only certain words have highly
skewed attention weights, among other cases in which multiple words have uniform
attention weights. The latter occurs when there are many translation options, such as the
generation of function words on the target side. This topic requires further investigation.

Adequacy In contrast, it is extremely rare for Dynamic Fusion itself to return an ade-
quate translation at the expense of fluency. Even if a particular word has a significantly
higher weight than other words, the prediction of the translation model may likely be
used for the output if it changes the meaning of the source sentence. In fact, the exam-
ple in Table [9] contains many tokens in which the output of the language model is not
considered, including at the beginning of the sentence.

One of the reasons for this is considered to be the difference in contributions be-
tween the translation model and the language model. We decomposed the transforma-
tion weight matrix in Equation (I2)) into the translation model and the language model
matrices, and we calculated the Frobenius norm for each matrix. The result reveals that
the translation model contributes about twice as much as the language model.

7 The language model cannot predict that the first token correctly because it starts with <BOS>.
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Role of language model Currently, most existing language models do not utilize the
source information. Accordingly, to eliminate noise in the language model’s fluent pre-
diction, language models should make predictions independently of translation models
and thus be used in tandem with attention from translation models. However, language
models are useful in that they have target information that results in fluent output; they
can thus make a prediction even if they do not know the source sentence.

Ultimately, the role of the language model in the proposed mechanism is to augment
the target information in order for the translation model to improve the fluency of the
output sentence. Consequently, the fusion mechanism takes translation options from the
language model only when it improves fluency and does not harm adequacy. It can be
regarded as a regularization method to help disambiguate stylistic subtleness such as in
the successful example in Table 5]

6 Conclusion

We proposed Dynamic Fusion for machine translation. For NMT, experimental results
demonstrated the necessity of using an attention mechanism in conjunction with a lan-
guage model. Rather than combining the language model and translation model with
a fixed weight, an attention mechanism was utilized with the language model to im-
prove fluency without reducing adequacy. This further improved the BLEU scores and
RIBES.

The proposed mechanism fuses the existing language and translation models by
utilizing an attention mechanism at a static ratio. In the future, we would like to consider
a mechanism that can dynamically weight the mix-in ratio, as in Cold Fusion.
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