Skip to main content

\(\textit{\textbf{k}}\)-Planar Graphs

  • Chapter
  • First Online:
  • 560 Accesses

Abstract

A topological graph is called k-planar, for \(k \ge 0\), if each edge has at most k crossings; hence, by definition, 0-planar topological graphs are plane. An abstract graph is called k-planar if it is isomorphic to a k-planar topological graph, i.e., if it can be drawn on the plane with at most k crossings per edge. While planar and 1-planar graphs have been extensively studied in the literature and their structure has been well understood, this is not the case for k-planar graphs, with \(k \ge 2\). These graphs have a more complex structure, which is significantly more difficult to comprehend. As an example, we mention that tight (possibly up to additive constants) bounds on the edge-density of k-planar graphs are only known for small values of k (that is, for \(k\in \{0,1,2,3,4\}\)), even though their existence yields corresponding improvements on the leading constant of the lower bound on the number of crossings of a graph, provided by the well-known Crossing Lemma. In this chapter, we focus on k-planar graphs, with \(k \ge 2\), and review the known combinatorial and algorithmic results from the literature. We also identify several interesting open problems in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Recall that the dual \(G^*\) of a plane graph G is defined as follows: \(G^*\) has a vertex for each face of G and for every two vertices of \(G^*\) there is an edge connecting them if and only if there corresponding faces of G share an edge.

References

  1. Kuratowski, C.: Sur le problème des courbes gauches en topologie. Fundamenta Mathematicae 15(1), 271–283 (1930)

    Article  MATH  Google Scholar 

  2. Boyer, J.M., Myrvold, W.J.: On the cutting edge: simplified O(n) planarity by edge addition. J. Graph Algorithms Appl. 8(2), 241–273 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: Trémaux trees and planarity. Int. J. Found. Comput. Sci. 17(5):1017–1030 (2006)

    Google Scholar 

  4. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)

    Google Scholar 

  5. Appel, K., Haken, W.: Every planar map is four colorable. part I: discharging. Illinois J. Math. 21(3):429–490 (1977)

    Google Scholar 

  6. Appel, K., Haken, W., Koch, J.: Every planar map is four colorable. part II: Reducibility. Illinois J. Math. 21(3):491–567 (1977)

    Google Scholar 

  7. Aigner, M., Ziegler, G. M.: Proofs from THE BOOK (3. ed.). Springer, Berlin (2004)

    Google Scholar 

  8. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 29, 107–117 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ackerman, E.: A note on 1-planar graphs. Discrete Appl. Math. 175, 104–108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borodin, O.V.: Solution of the ringel problem on vertex-face coloring of planar graphs and coloring of 1-planar graphs. Metody Diskret. Analiz 41, 12–26 (1984)

    MathSciNet  MATH  Google Scholar 

  11. Borodin, O.V.: A new proof of the 6 color theorem. J. Graph Theory 19(4), 507–521 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Planar map graphs. In: Vitter, J.S. (ed.) STOC, pp. 514–523. ACM (1998)

    Google Scholar 

  13. Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Recognizing hole-free 4-map graphs in cubic time. Algorithmica 45(2), 227–262 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Suzuki, Y.: Re-embeddings of maximum 1-planar graphs. SIAM J. Discrete Math. 24(4), 1527–1540 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Von Bodendiek, R., Schumacher, H., Wagner, K.: Bemerkungen zu einem Sechsfarbenproblem von G. Ringel. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 53(1):41–52 (1983)

    Google Scholar 

  16. Von Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale Graphen. Mathematische Nachrichten 117(1), 323–339 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, X., Jianliang, W.: On edge colorings of 1-planar graphs. Inf. Process. Lett. 111(3), 124–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theory 72(1), 30–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. J. Graph Algorithms Appl. 22(1), 23–49 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Brandenburg, F.J.: On 4-map graphs and 1-planar graphs and their recognition problem (2015). arXiv:1509.03447

  23. Brandenburg, F.J.: Recognizing optimal 1-planar graphs in linear time. Algorithmica 80(1), 1–28 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theory 12(3), 335–341 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs. In Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON, LNCS, vol. 7434, pp. 335–346. Springer, Berlin (2012)

    Google Scholar 

  26. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Suzuki, Y.: Optimal 1-planar graphs which triangulate other surfaces. Discrete Math. 310(1), 6–11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Brinkmann, G., Greenberg, S., Greenhill, C.S., McKay, B.D., Thomas, R., Wollan, P.: Generation of simple quadrangulations of the sphere. Discrete Math. 305(1–3), 33–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar graphs. In: Aronov, B., Katz, M.J. (eds.) SoCG, LIPIcs, vol. 77, pp. 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  30. Hasheminezhad, M., McKay, B.D., Reeves, T.: Recursive generation of simple planar 5-regular graphs and pentangulations. J. Graph Algorithms Appl. 15(3), 417–436 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Urschel, J.C., Wellens, J.: Testing k-planarity is NP-complete (2019). arXiv:1907.02104

  32. Pach, J., Radoicic, R., Tardos, G., Tóth, G.: Improving the crossing lemma by finding more crossings in sparse graphs. Discrete Comput. Geom. 36(4), 527–552 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ackerman, E.: On topological graphs with at most four crossings per edge (2015). arXiv:1509.01932

  34. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédi, E.: Crossing-free sub-graphs. In: Hammer, P.L., Rosa, A., Sabidussi, G., Turgeon, J. (eds.) Theory and Practice of Combinatorics, Number 12 in North-Holland Mathematics Studies, pp. 9–12. North-Holland (1982)

    Google Scholar 

  36. Frank Thomson Leighton: Complexity Issues in VLSI: Optimal Layouts for the Shuffle-exchange Graph and Other Networks. MIT Press, Cambridge (1983)

    Google Scholar 

  37. Czap, J., Przybylo, J., Skrabul’áková, E.: On an extremal problem in the class of bipartite 1-planar graphs. Discuss. Math. Graph Theory 36(1), 141–151 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Angelini, P., Bekos, M.A., Kaufmann, M., Pfister, M., Ueckerdt, T.: Beyond-planarity: Turán-type results for non-planar bipartite graphs. In: Hsu, W.-L., Lee, D.-T., Liao, C.-S. (eds.) ISAAC, LIPIcs, vol. 123, pp. 28:1–28:13. Schloss Dagstuhl (2018)

    Google Scholar 

  39. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On the density of non-simple 3-planar graphs. In: Hu, Y., Nöllenburg, M. (eds.) Graph Drawing and Network Visualization, LNCS, vol. 9801, pp. 344–356. Springer, Berlin (2016)

    Google Scholar 

  40. Bae, S.W., Baffier, J.-F., Chun, J., Eades, P., Eickmeyer, K., Grilli, L., Hong, S.-H., Korman, M., Montecchiani, F., Rutter, I., Tóth, C.D.: Gap-planar graphs. Theor. Comput. Sci. 745, 36–52 (2018)

    Google Scholar 

  41. Auer, C., Brandenburg, F.-J., Gleißner, A., Hanauer, K.: On sparse maximal 2-planar graphs. In Didimo, W., Patrignani, M. (eds.) Graph Drawing, LNCS, vol. 7704, pp. 555–556. Springer, Berlin (2012)

    Google Scholar 

  42. Chaplick, S., Kryven, M., Liotta, G., Löffler, A., Wolff, A.: Beyond planarity. In: Frati, F., Ma, K.-L. (eds.) Graph Drawing and Network Visualization, LNCS, vol. 10692, pp. 546–559. Springer, Berlin (2017)

    Google Scholar 

  43. Hong, S.-H., Nagamochi, H.: Testing full outer-2-planarity in linear time. In: Mayr, E.W. (ed.) WG, LNCS, vol. 9224, pp. 406–421. Springer, Berlin (2015)

    Google Scholar 

  44. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with spqr-trees. Algorithmica 15(4), 302–318 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gutwenger, C., Mutzel, P.: A linear time implementation of spqr-trees. In: Marks, J. (ed.) Graph Drawing, LNCS, vol. 1984, pp. 77–90. Springer, Berlin (2000)

    Google Scholar 

  46. Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth, D., Reislhuber, J.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Angelini, P., Bekos, M.A., Brandenburg, F.J., Da Lozzo, G., Di Battista, G., Didimo, W., Liotta, G., Montecchiani, F., Rutter, I.: On the relationship between k-planar and k-quasi-planar graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG, LNCS, vol. 10520, pp. 59–74. Springer, Berlin (2017)

    Google Scholar 

  48. Hoffmann, M., Tóth, C.D.: Two-planar graphs are quasiplanar. In: Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.) MFCS, LIPIcs, vol. 83, pp. 47:1–47:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Bekos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bekos, M.A. (2020). \(\textit{\textbf{k}}\)-Planar Graphs. In: Hong, SH., Tokuyama, T. (eds) Beyond Planar Graphs. Springer, Singapore. https://doi.org/10.1007/978-981-15-6533-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6533-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6532-8

  • Online ISBN: 978-981-15-6533-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics