Skip to main content

Adaptive Applications of Maximum Entropy Principle

  • Conference paper
  • First Online:
Progress in Advanced Computing and Intelligent Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1198))

Abstract

The probability distribution of a system can be adaptively derived using the maximum entropy principle subject to its information set in terms of probabilistic moments. The obtained probability  distribution characterizes the wide range of exponential family of distributions when one maximizes Shannon entropy. On maximizing Tsallis entropy with non-extensive parameter q, power law distributions are obtained which portrays the well-known Shannon family of exponential distribution as, \(q \to 1\). The maximization of Shannon entropy subject to the shifted geometric mean constraints leads to a probability distribution in terms of Hurwitz zeta function. This density characterizes the equilibrium state of broadband network traffic. Moreover, maximization of Shannon entropy in Laplace domain subject to specific constraints provides a transient probability distribution which characterizes the behavior of M/M/1/1 queueing system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh VP, Rajagopal AK, Singh K (1986) Derivation of some frequency distributions using the principle of maximum entropy (POME). Adv Water Resour 9(2):91–106

    Article  Google Scholar 

  2. Mitzenmacher M (2003) A brief history of generative models for power law and lognormal distributions. Internet Math. 1(2):129–251

    MathSciNet  Google Scholar 

  3. Leland WE, Taqqu MS, Willinger W, Wilson DV (1994) On the self-similar nature of ethernet traffic. IEEE/ACM Trans Networking 2:1–15

    Article  Google Scholar 

  4. Kapur JN (1989) Maximum-entropy models in science and engineering. Wiley Eastern Ltd.

    Google Scholar 

  5. Sharma S (2006) Queue length distribution of network packet traffic: Tsallis entropy maximization with fractional moments. IEEE Commun Lett 10(1):34

    Article  MathSciNet  Google Scholar 

  6. Senapati D (2016) Generation of cubic power-law for high frequency intra-day returns: maximum Tsallis entropy framework. Digit Signal Proc 48:276–284

    Article  MathSciNet  Google Scholar 

  7. Lampo TJ, Stylianidou S, Backlund MP, Wiggins PA, Spakowitz AJ (2017) Cytoplasmic RNA-protein particles exhibit non-Gaussian subdiffusive behavior. Biophys J 112(3):532–542

    Article  Google Scholar 

  8. Karagiannis T, Molle M, Faloutsos M (2004) Long-range dependence: ten years of internet traffic modeling. IEEE Internet Comput 8:57–64

    Article  Google Scholar 

  9. Clegg RG, Cairano-Gilfedder CD, Zhou S (2010) A critical look at power law modelling of the internet. Comput Commun 33:259–268

    Article  Google Scholar 

  10. Goh KI, Kahng B, Kim D (2001) Universal behavior of load distribution in scale-free networks. Phys Rev Lett 87(27):278701

    Article  Google Scholar 

  11. Jaynes ET (1982) On the rationale of maximum-entropy methods. Proc IEEE 70:939–952

    Article  Google Scholar 

  12. Presse S, Ghosh K, Lee J, Dill KA (2013) Principles of maximum entropy and maximum caliber in statistical physics. Rev Modern Phy 85:1115–1141

    Article  Google Scholar 

  13. Visser M (2013) Zipf’s law, power laws and maximum entropy. New J Phys 15:040321

    Article  Google Scholar 

  14. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  MathSciNet  Google Scholar 

  15. Sharma S (2006) Queue length distribution of network packet traffic: Tsallis entropy maximization with fractional moments. IEEE Commun Lett 10(1):34

    Article  MathSciNet  Google Scholar 

  16. Koverda VP, Skokov VN (2012) Maximum entropy in a nonlinear system with a 1/f power spectrum. Physica A 391:21–28

    Article  Google Scholar 

  17. Cover TM, Thomas JA (2012) Elements of information theory. Wiley, New York

    MATH  Google Scholar 

  18. Rajput NK, Ahuja B, Riyal MK (2018) A novel approach towards deriving vocabulary quotient. Digital Scholarship Human 33(4):894–901

    Article  Google Scholar 

  19. Gell-Mann M, Tsallis C (eds) (2004) Nonextensive entropy: interdisciplinary applications. Oxford University Press on Demand, Oxford

    MATH  Google Scholar 

  20. Singh AK (2014) Power law behavior of queue size: maximum entropy principle with shifted geometric mean constraint. IEEE Commun Lett 18(8):1335–1338

    Article  Google Scholar 

  21. Singh AK, Singh HP (2015) Karmeshu,: Analysis of finite buffer queue: maximum entropy probability distribution with shifted fractional geometric and arithmetic means. IEEE Commun Lett 19(2):163–166

    Article  Google Scholar 

  22. Singh AK (2015) Performance modeling of communication networks: power law behavior in stationary and non-stationary environments, thesis, JNU, New Delhi

    Google Scholar 

  23. Shortle JF, Thompson JM, Gross D, Harris CM (2014) Fundamentals of queueing theory. Wiley, New York

    MATH  Google Scholar 

  24. Mukherjee T, Singh AK, Senapati D (2019) Performance evaluation of wireless communication systems over Weibull/q-lognormal shadowed fading using Tsallis’ entropy framework. Wirel Pers Commun 106(2):789–803

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, A.K., Senapati, D., Mukherjee, T., Rajput, N.K. (2021). Adaptive Applications of Maximum Entropy Principle. In: Panigrahi, C.R., Pati, B., Mohapatra, P., Buyya, R., Li, KC. (eds) Progress in Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol 1198. Springer, Singapore. https://doi.org/10.1007/978-981-15-6584-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6584-7_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6583-0

  • Online ISBN: 978-981-15-6584-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics