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Abstract. Segmentation of Lung is the vital first step in radiologic diagnosis of
lung cancer. In this work, we present a deep learning based automated technique
that overcomes various shortcomings of traditional lung segmentation and explores
the role of adding “explainability” to deep learning models so that the trust can be
built on these models. Our approach shows better generalization across different
scanner settings, vendors and the slice thickness. In addition, there is no initializa-
tion of the seed point making it complete automated without manual intervention.
The dice score of 0.98 is achieved for lung segmentation on an independent data
set of non-small cell lung cancer.

Keywords: Lung segmentation - NSCLC - Deep learning

1 Introduction

Lung cancer is the leading cause for cancer related deaths and is accompanied by a dismal
prognosis with a 5-year survival rate at only 18% [1]. Out of all Lung cancer, Non-Small
Cell Lung Cancer (NSCLC) accounts for 85% of the cases. Treatment monitoring and
analysis [2] using computed tomography (CT) images is an important strategy for early
lung cancer diagnosis and survival time improvement. In these approaches, accurate
Lung anatomy and pathology region segmentation is necessary as it directly related
to the treatment plan. After decades of development in imaging techniques, volumes of
high-resolution images with low distortions are now more easily available. Despite devel-
opment of approaches for lung segmentation in recent years [3—6], achieving accurate
segmentation performance continues to require attention because of specific challenges.
One such example is tumors have an intensity similar to that of lung wall; thus, they
are difficult to distinguish using intensity values alone and also the structure of the lung
changes based on the disease pathology such as consolidation, masses, pneumothorax

or effusions.

There is considerable progress in developing Lung segmentation algorithms that
have an ability to perform accurate delineation under different disease conditions [7].
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In general, all the lung segmentation algorithms can be classified into following five
sub categories (1) Intensity based (2) Shape based or Model based (3) Neighboring
anatomy guided (4) Region based (5) Artificial Intelligence based [7]. The intensity based
approaches are fast, intuitive and computationally efficient however these techniques
fail during the pathological condition where there are attenuation variation. The shape
based or the model based approaches provide a very good accuracy due to template
mapping, however these algorithms are computationally inefficient and it’s difficult to
create representative training features. Neighboring anatomy based approach exploits
the information of the spatial context of the neighboring organ of the lung such as
rib cage, heart, spine for extracting the contours of the lung region, this approach is
computationally expensive but provide good results when the intensity variation is mild
to moderate. However, in case of the extreme diseased condition such as opacification
of entire hemithorax this approach fails. Region growing approaches such as watershed
transform, graph cuts and random walks are efficient but they tend to over segment. In
recent times Al based (Machine Leaning and Deep Learning) approaches have become
popular and in particular Deep Learning (DL) approaches due to the better accuracy that
these algorithms achieve in ill defined pathologic conditions [8].

Recently, Convolutional Neural Networks (CNN) have been seen as a powerful tool
for learning features from network layers [9]. CNN’s act as a tool for learning discrim-
inative features, which are useful in different image processing and computer vision
tasks. CNN’s need relatively less pre-processing compared to other known algorithms,
which means the network learns the filters that in traditional algorithms had to be hand
engineered [9]. The independence from prior knowledge and effort required in feature
selection design is a major advantage. Moreover, CNN’s include multi-layer processing,
which ensures that the model learns the features at the granular level. In recent time,
there has been progressive usage of CNN’s for various medical segmentation tasks. Dou
et al. [10] uses a 3D CNN, which focuses on the task of automatic nodule detection.
DIAG Convnet by Setio et al. [ 11] provides automatic pulmonary nodule detection in CT
images. The review article by Zhou et al. [12] lists various deep learning based medical
segmentation approaches developed for different modalities and anatomies. Although,
CNN’s are explored for medical image segmentation, we did not come across a study
with large-scale validation of the Lung segmentation approach with deep learning in
diseased conditions.

The objectives of the current work are manifold. The first being to test the efficacy
of the deep learning models on a large scale diseased Lung dataset to automatically
segment the Lung region. Second, to compare DL approach with the traditional seg-
mentation methods and comment on the complexity and efficiency. Third being, adding
“explainability” to deep learning models so that the trust can be built on these models.

2 Methodology

In the traditional approach of Lung segmentation, the canonical steps are employed as
shown in Fig. 1. However, there might be slight variation in each of the block based on
the algorithm that is considered for implementation. Each of these blocks needs tuning
based on the image type and the acquisition parameters of the scanner. Marker generation
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is used to define the region that is present inside and outside the Lung region; this is
performed manually by marking the region using a seed point. Further, the image is
preprocessed by applying the filters as well as HU thresholding to eliminate unwanted
region. This is followed by running a segmenter algorithm (such as watershed, active
contour etc.) and performing the morphological and post processing operations to correct
the contours. These traditional approaches needs manual and empirical tuning and quite
difficult to generalize on the large and varied dataset with different acquisitions and
threshold values.

Ve Pre . ) Morpholf)gical Post
Generation processing egmenter Operations Processing

Fig. 1. Traditional lung segmentation approach

The approach adapted in this work is described in the section below, which is rep-
resented by the block diagram schematic as shown in Fig. 2. There are two phases in
creation of the deep learning model, which aids in segmentation of the Lung anatomy.
First being the training phase, where in the data is fed after preprocessing to the model,
where the model is trained with the annotated ground truth (region of the Lung) as the
reference. Further, the learnt model layers are analyzed using visualization to ascertain,
what region of the image, model looked into to arrive at the delineation of the Lung
region. In the scoring phase, the trained model is used to delineate the region of the lung
on the unseen/live Lung CT scans.

2.1 Data

The data set used for model training which was obtained from The Cancer Imaging
Archive (TCIA) repository of NSCLC patients [13]. This dataset contained pretreatment
CT scans where in the lung regions were manually delineated by the radiation oncologist
on the 3D volume. This data set will be referred as Lung 1. In total 422 subjects were
used for training, which maps to ~42,019 Lung CT slices on which the algorithm was
trained. Out of 422 subjects, randomly 300 subjects were used for model training and
remaining 122 for model validation. The training data had following sub categories of
NSCLC: Adenocarcinoma, Large cell carcinoma and Squamous cell carcinoma. The
CT scanners used for imaging the subjects were from different vendors (Siemens, CNS
Inc, Philips and GE) and the slice thickness varied from 0.65 to 5 mm with 512 * 512
resolution. Further, for testing the model, independent data set of Lung 2 was used which
is marked as NSCLC Radiogenomics dataset in TCIA repository with 211 subject’s [14].
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Fig. 2. Deep Learning based lung segmentation approach

The testing data had following different sub categories of NSCLC: Adenocarcinoma,
Squamous cell carcinoma and NOS. The demographics of each of the subgroups of
training and testing are mentioned in the Fig. 3.

Training and Validation Testing

(Lung 2 data set)
n=211

(Lung 1 data set)
NSCLC

n=422

Model training Model Validation
n=300 n =122
Subject Adeno Large cell Squamous suhjec.t ) Ad.ano 5quan.|ous cell NOs
ki N . cell NOS characteristics carcinoma carcinoma
carcinoma Number of 172 35 4
Num!nr of 51 114 152 105 subjects
subjects Male 103 28 0
Male 32 71 112 75
Female 69 7 4
Female 19 43 40 30
Mean Age 67.3 70.6 71
(years)
Msan Ase 67.2 66.9 702 65.6
(years)

Fig. 3. Data demographics and data split for model training

2.2 Pre Processing

The input CT volumes are processed to set non-anatomical regions such as air (with
HU value below —1000) to 0, so that number of the pixel computations are reduced.
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The data augmentation was performed in terms of translation and rotation (0 to 30°) to
make the model robust against the data variations. No specific preprocessing steps such
as de-noising, artifact corrections, system-based calibration were employed, which are
typical in conventional approaches of Lung segmentation. The preprocessing approach
was specifically designed to have minimum steps, to test the efficacy of convolution
neural networks.

2.3 Training Deep Learning Model

The target of the current approach is, given a CT slice of a lung (diseased or non-diseased)
the region of whole Lung need to be segmented. We employ modified U-Net [15] inspired
CNN architecture to arrive at segmented region of the lung. We follow a pixel based
classification mechanism that aims at classifying whether each pixel belongs to Lung
region. The model architecture that is built was inspired from U-Net Convolution Neural
Network (CNN), which consists of 18 convolutional layers, 4 central pooling layers
with the convolutional kernel size of 3X3 in each convolutional layer. The schematic
representation of the model architecture is as shown in the Fig. 4.

The convolutional layers perform convolutional operation on all input feature maps
to obtain output features defined by the Rectified Linear Units (ReLU) activation function
[16]. The feature map layer combination is defined by the Eq. (1)

£ :ReLU(Z:’; Cl % fi +b’) (1)

Where f/ and f/ are the i™ input feature map and j™ output feature map, respec-
tively. We define C¥ as the convolutional kernel between f? and f/ (* denotes the 2-D
convolutional operation), b is the bias of the j output feature map.

After each convolutional layer, a rectified linear unit (ReLU) is used as a non-linear
activation function, this is added to bring non linearity to the model and is expressed as:

ReLU (z) = max(0, z) )

Further to the last convolutional layer, a fully connected layer is applied where each
output unit connects to all inputs. This layer can capture correlations between different
features produced by the convolutional layer. For achieving non-linearity and a two-class
output classifier, the sigmoid function was used. Since the sigmoid function ranges from
zero to one, it can be directly related to class probabilities making it ideal activation
function for classification task.

3)

sigmoid (z) = 5o

The goal of network training is to maximize the probability of the correct class.
This is achieved by minimizing the dice coefficient loss function. The loss function is
minimized during the model’s training process. The weight updation was performed
using Adaptive Moment Estimation (ADAM) algorithm [17]. Instead of adapting the
parameter learning rates based on the average first moment as in RMSProp, ADAM
makes use of the average of second moments of the gradients. Specifically, the algorithm
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calculates an exponential moving average of the gradient and the squared gradient, and
the parameters B1, B> control the decay rates of these moving averages. The initial
value of the moving averages and B, B, values close to 1.0 (recommended) results
in a bias of moment estimates towards zero. This bias is overcome by calculating the
biased estimates and then calculating bias-corrected estimates. ADAM is an extension
to stochastic gradient descent and converges faster than other stochastic optimization
methods [18]. It also rectifies problem such as vanishing learning rate, slow convergence
that other optimization problems face which leads to fluctuating loss function. The
weights are updated based on the below equation

My
with O 77+ 4)
Viw €
Where ¢ is a small number used to prevent division by zero.
And
(t+1)
~ my,
My = —— 5
=T 5)
(+1)
~ Vw
Vy = —— 6
=T ©)

Where m,, and v,, are estimates of the first moment and second moment of the
gradients respectively. B; and B, are the forgetting factors for gradients and second
moments of gradients, respectively.

The hyperparameters used for the model training are Optimizer = ADAM, Learn-
ing Rate = 1.0e—6, Metric = Dice score, Number of Epochs = 50, Batch Size =
2, Weight Initialization Method = Xavier initialization. The dice similarity coefficient
(DSC) is used as the primary evaluation criteria for assessing the automatic segmenta-
tion accuracy; also, this is used as a loss function for the backward propagation in the
proposed model. The DSC expressed as in Eq. (7) provides amount of overlap between
two segmentation results [19], wherein Gy is the groundtruth segmentation and Auto is
the automated segmentation performed by the trained model.

2 % V(G; N Auto)
DSC=—7——— @)
V(G;) + V(Auto)
In the implementation, RT Structure of delineated lung region on each slice by the
radiologist is considered as the ground truth and the region predicted by the model is
overlaid on the RT Structure mask to arrive at the DSC.

2.4 Model Visualization

Interpreting the deep learning model and understanding model’s rationale behind the
decision process to arrive at the prediction is challenging. In order to ensure that the
model is indeed looking into the relevant regions in the input image to arrive at the
decision, a visualization engine was added on top of the built model. The approach used to
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build the model visualization was Gradient-weighted Class Activation Mapping (Grad-
CAM) [20]. The Grad-CAM works on the class discriminative localization approach
wherein it uses the gradients of target of the final convolutional layer to produce a coarse
localization map, highlighting the regions considered in the image for predicting the
concept. This is not only useful to know about the regions responsible for prediction
but also aids in debugging the decision process in the networks. In essence, Grad-CAM
takes into account the penultimate layer (layer before softmax) to interpret the decision
of the CNN and identifies the respective filter activation for every spatial location (i,
j) in the given image, further this is converted into the heat map based on the weights
indicating the prominent regions. The mathematical aspect is depicted in the Eq. (8, 9).

WC_lZZBYC (8)
k=g i j Ak

1 :
§¢ — . Zi Zj Zk WA ©)

3

S —0OHH
— se o Back
& i l:l _. _. bropagation
I:I Annotated Lung Mask
{——-0OHH

13

Input CT Image

3

Fig. 4. Model architecture

The spatial score of a specific class S¢ is the global average pooling over spatial
location (i, j) for the gradient of respective class output Y¢ with respect to the feature
map Ag The spatial score is obtained by multiply the resulting value with the feature
map along with its channel axis k. The ) describes the pooling and average operation
and z is constant. The output of the sample GradCAM results can be seen in Fig. 5. It
can be observed from the figure that location of the lungs are highlighted with red colour
indicating the maximum activation of the filters in that region, mapping to understanding
that the model has learnt the region of image that needs to be segmented.

3 Results and Discussion

The training data set containing 300 subjects of NSCLC, were fed to the U-Net inspired
model for training and 122 subjects were used as the validation set. The training accuracy
of 0.99 dice score was obtained after 50 epochs of training. The quantitative analysis
resulted in average dice score of 0.98 on the independent test data of Lung 2 dataset,



Auto Segmentation of Lung in Non-small Cell Lung Cancer 347

Lungslice Predicted

20

400

o

200400

200 400

°

200 400

200 400

o

200 400

©

200 400

°

‘)

°

200 400

20

400

o

C
B

200 400

20

400

°

n

200 400

20

400

0 200 400

Fig. 5. GradCAM visualization on Lung region.

Algorithm Learnin
P - High

Medium

HMemum
Low
High
HMemum
Low
High
HMemum
Low
High
HMedlum
Low
ngn

Medium
Medium

Medium

Low
200

C.

200

High

Medium

Low

High

Medium

Algorithm Learning on top of Lung

200

400

o

0 200400

200

400

0 200 400

0

°

°

comprising of 211 subjects. The Bland-Altman plot showing the variation of difference
between the ground truth dice score and predicted dice score vs mean of ground truth
and predicted dice score of the test data is plotted in the Fig. 6. It can be observed that the
differences are within mean £1.96 SD indicating that the segmentation performed by
the model resembles the ground truth with high accuracy. Also, the box plot in the Fig. 7
on the test data shows the similar results indicating the average predicted dice score in
the range of 1 to 0.98 without outliers being seen, thus suggesting the robustness of the
model. The model was built using Keras (2.1.1) and Tensor flow (1.2.1) as backend in
python 3.0. The machine configuration used for training the model had Nvidia GPU
(Titan X 1080T1) with the mentioned model hyper parameters. The scoring time on the
same GPU configuration took one millisecond per lung slice.
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Fig. 7. Box Plot of dice score of lung anatomy on the test set

The sample results of segmented output can be observed in the Fig. 8. The first
column is input CT slice, second column depicts annotation of the lung marked by the
radiation oncologist, third column in the figure maps to the segmented output by our
model, fourth being lung contour extracted from the predicted segmentation and fifth
column is the over laid contour on the original Lung slice. It can be observed that the lung
segmentation model is robust to the different anatomical structure of the Lung ranging
from symmetric lung (rows d—f) to partial lung region being visible (row i—j), in the
bottom two rows of the figure.
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Fig. 8. Segmented Lung region and the associated ground truth masks

Table 1. Comparison with other lung segmentation approaches.

Title Approach Number of dataset(n) Average dice score Test dataset

Y. Wei Getal. [21] Bresenham 97 subjects 0.95 Externally validated on
algorithm 25 Subjects

Dai et al. [22] Gaussian Mixture | Not mentioned 0.98 No external validation

based model

Noor et al. [5] Thresholding & 96 subjects 0.98 No external validation
morphological
Zhang et al. [23] Active contour 60 subjects 0.97 Externally validated on
60 subjects
Our approach Deep Learning 422 Subjects 0.98 Externally validated on

211 subjects
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4 Conclusion

Multiple algorithms in the literature have attempted the segmentation of the lung
anatomy, the algorithms varies from simple thresholding to that of machine learning
approaches. The Table 1 provides comparison of lung segmentation approaches being
published recently. The prior work by Y. Wei et al. [21] performs both preprocessing
as well as post processing of the scans to arrive at the segmentation and its validated
on limited external data of 25 subjects leading to DSC of 0.95. However, as there are
preprocessing steps used in this study, where in each of these steps needs to optimize
based on the scan type, slice thickness and acquisition parameters leading to loss of
generalization in the approach. Another study by Dai et al. [22] used Gaussian mix-
ture model based approach; wherein there is need of manual seed point, initialization
and custom preprocessing for noise elimination. The study does not mention the data
characteristics, diseased conditions as well as number of subjects used for building the
model, leading to questioning the claims of the study. Noor et al. [5] used thresholding
approach and claimed DSC of 0.98 without external validation data set. In addition, the
study focused only on a single scanner type as well as single slice thickness of 10 mm
making the approach difficult to be generalized across all the scanner types, disease
conditions and the variability. Another study by Zhang et al. [23] showed robustness
of active contour model for delineation of the lung region with pathological conditions,
also the model took into account the variability of scanner setting and the data. Further,
the model was validated on the external data of 60 subjects resulting in the dice score of
0.97, with a robust validation approach. However, in this study there is a need to initialize
the threshold value and perform preprocessing steps such as Gaussian smoothing. Com-
pared to existing approaches, our model is exhaustively validated on the diseased data
set with external data and there is no preprocessing or post processing performed, no
domain-based adaptation is performed to arrive at the delineation. Our approach shows
better generalization across different scanner settings, vendors and the slice thickness.
In addition, there is no initialization of the seed point making it complete automated
without manual intervention.
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