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Abstract This chapter presents the XcalableMP on the Fugaku supercomputer, the
Japanese flagship supercomputer developed by FLAGSHIP2020 project in RIKEN
R-CCS. The porting and the performance evaluation were done as a part of this
project, and the XcalableMP is available for the Fugaku users for improving the
productivity and performance of parallel programing. The performance of Xcal-
ableMP on the Fugaku is enhanced by the manycore processor and a new Tofu-D
interconnect. We are now working on the next version, XcalableMP 2.0, for cutting-
edge high-performance systems with manycore processors by multithreading and
multi-tasking with integrations of PGAS model and synchronization models. We
conclude this book with retrospectives and challenges for future PGAS models.

1 Introduction

We have been developing a production-level XcalableMP compiler, and make it
available for the K computer’s users as well as the users of conventional clusters.
RIKEN R-CCS has been carrying out the FLAGSHIP 2020 Project [1] to develop
the Japanese flagship supercomputer system following the K computer, the Post-
K, formally named as “Fugaku” later, since 2014. In the project, XcalableMP was
taken as a parallel programming language project for improving the productivity and
performance of parallel programing. XcalableMP is now available on Fugaku and
the performance is enhanced by the Fugaku interconnect, Tofu-D. The next section
describes the XcalableMP on Fugaku.
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The XcalableMP project has been started from 2008 and the discussion on
XcalableMP 1.x has converged. We are now working on a new version, XcalableMP
2.0, targeted for cutting-edge high-performance systems with manycore processors
by multithreading and multi-tasking with integrations of PGAS model and synchro-
nization models. In this new programming model, the execution of the program is
decomposed into several tasks executed according the dependency between tasks.
This model will enable less overhead of synchronization by eliminating expensive
global synchronization, overlap between computation and communication in many-
core, and light-weight communication by RDMA in PGAS model. We will extend
this programming model to combine several kinds of accelerators such as GPU,
FPGA, and special-purpose processors with large-scale general-purpose manycore
systems. It enables some tasks to be offloaded into the accelerators such as FPGA
as well as each core in modern manycore processor. We consider this configuration
as a general global architecture of the future system as some part of system will
be specialized for high performance and power efficiency. Our programming model
will make it easy to adopt the existing computational science program to the new
systems.

In Sect. 3, a proposal for XcalableMP 2.0 is presented, followed by retrospectives
and challenges for future PGAS models in Sect. 4.

2 XcalableMP on Fugaku

In this section, we report our early experience and the preliminary performance of
XcalableMP on Fugaku. The Fugaku is a huge-scale system with general-purpose
manycore processors. The node processor is a single chip, Fujitsu A64FX, which
consists of 48 cores with 2 or 4 cores dedicated for OS activities, 32 GiB HBM2
memory, with Tofu-D interconnect, and a PCI express controller in the chip together.
The Fugaku system consists of 158,976 nodes in 432 racks. The Fugaku is scheduled
to be put into operation for public service around 2021. In 2020, the installation is
completed and the system partially serves the early access program.

XcalableMP is available as a parallel programming language for the Fugaku,
supported by R-CCS team with Fujitsu. C and Fortran are supported as base
languages with XcalableMP 1.2 compliant.

We report the preliminary performance of XcalableMP program running on the
Fugaku.'

We used the following versions:

¢ Omni XcalableMP Version: 1.3.2, Git Hash: 6d23f46.
» Language specification: 1.2.25.

IThe reported results were obtained on the evaluation environment in the trial phase. Note that the
performance is not guaranteed at the start of its operation.
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The performance of XcalableMP on the Fugaku is enhanced by the manycore
processor and a new Tofu-D interconnect.

2.1 Performance of XcalableMP Global View Programming

We executed the IMPACT-3D, described in Chap. 6, for the evaluation of Xcal-
ableMP global view programming in the Fugaku, using up to 512 nodes. The
scalability on Fugaku is shown in Fig. 1, comparing to the MPI version. The program
is parallelized by hybrid XMP-OpenMP parallel programming: An XMP node is
assigned to a node, and 48 OpenMP threads are running within a node. The problem
size is 512 x 512 x 512 with three-dimensional block distribution. The compile
option is “-Kfast”.

As shown in the figure, we found a good scalability in Fugaku, and the
performance is better than that by MPI thanks to the optimized XMP runtime for
communications in the stencil computation [2].

2.2 Performance of XcalableMP Local View Programming

Fugaku has a customized interconnection, called Tofu-D, which provides hardware-
supported RDMA (Remote Direct Memory Access) operations. We implemented
the XMP runtime library to make use of Tofu-D for one-sided communication for

Speedup (MPl on 8 = 8)

# XMP nodes

Fig. 1 Speedup of Impact3D on Fugaku and performance comparing to K computer
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the XMP local view programming. The library is implemented by using a low-level
communication layer, uTofu API [3], provided by Fujitsu.

For performance evaluation of XMP local view programming, we used CCS
QCD and NTChem-MINI taken from the coarray version of Fiber Miniapp Suite [4,
51

To run CCS QCD mini-application [6], eight XMP nodes are assigned to one
node, running in a flat XMP mode. The size and conditions are as follows:

e Target data: Class 2 (32 x 32 x 32 x 32) (strong scaling).

* Compiler options: -Kfast, zfill, simd=2.

e Timing region: sum of “Clover + Clover_inv Performance” and “BiCGStab
(CPU: double precision) Performance” of the built-in timing feature.

Figure 2 shows the speedup of the Fugaku, comparing to the performance of
the K computer. The XMP version archives almost same performance of the MPI
version. Note that the reason of the performance degradation of the XMP version on
the K computer is the overhead of allocation for allocatable coarray used as a buffer
for communication. It is improved by removing this overhead by using the uTofu
communication layer.

The NTChem-MINI is a mini-application taken from NTChem [7], a high-
performance software package for molecular electronic structure calculation. An
XMP node is assigned to one node, and within a node, BLAS functions are executed
using 48 cores. The size and conditions are set as follows:

» Target data: taxol (strong scaling).
* Compiler options: -Kfast, simd=2.
* Timing region: “RIMP2_Driver” of the built-in timing feature.

==XMP/K
64 ~=MPI/K
XMP-uTofu/Fugaku
32 XMP-MPI3/Fugaku | .
—~MPI/Fugaku /

16

Speedup (XMP/Kon 1=1)

#nodes

Fig. 2 Speedup of CCS QCD on Fugaku and performance comparing to the K computer
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——MPI/K
XMP/Fugaku
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Speedup (MPI/K on 2=2)
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Fig. 3 Speedup of NTChem-MINI on Fugaku and performance comparing to the K computer

As shown in Fig. 3, the XMP versions archive almost the same performance of
the original MPI versions.

3 Global Task Parallel Programming

Recently, large-scale clusters of manycore processors such as Intel Xeon Phi have
been deployed in many sites from the latest Top500 Lists. In order to program
manycore processors, OpenMP is widely used as a shared-memory programming
model. Most OpenMP programs are written using work sharing constructs for
loops, which involves a global synchronization. However, especially in modern
manycore processors, the global synchronization cost for work sharing becomes
bigger, and the load imbalance among cores lead to the performance degradation
as the number of cores on the processor increases. Task parallel programming
using task dependency in OpenMP 4.0 is a promising candidate to facilitate the
parallelization for such manycore processors because it enables users to avoid global
synchronization by fine-grained task-to-task synchronization through user-specified
data dependencies.

We are interested in extending the task parallel programming model to the
PGAS model of XcalableMP for distributed memory systems. As well as removing
expensive global synchronization, it is expected to enable the overlapping of
communication and computation. For XMP 2.0, we propose the global task parallel
programming.

In OpenMP, the task dependency in a node depends on the order of reading and
writing to data based on the sequential execution. Therefore, the OpenMP multi-
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tasking model cannot be applied to describe the dependency between tasks running
in different nodes since threads of each nodes are running in parallel.

We propose new directives for communication with tasks in XMP, and they
enable users to write easily the multi-tasking execution based on XMP language
constructs. The tasklet directive generates a task for the associated structured block
on the node specified by the on clause, and the task is scheduled and immediately
executed by an arbitrary thread in the specified node if there is no task dependency. If
it has any task dependencies, the task execution is postponed until all dependencies
are resolved. The tasklet gmove directive copies the variable of the right-hand side
(RHS) into the left-hand side (LHS) of the associated assignment statement for local
or distributed data in tasks. If the variable of the RHS or the LHS is the remote
data, this directive may synchronize on data dependency between nodes and execute
communication. The tasklet reflect directive is a task-version of reflect operation. It
updates halo regions of the array specified to array-name in tasks. In this directive,
data dependency is automatically added to these tasks based on the communication
data because the boundary index of the distributed data is dynamically determined
by XMP runtime system.

We have designed a simple code translation algorithm from the proposed
directives to XMP runtime calls with MPI and OpenMP. We have evaluated
the performance using block-Cholesky Factorization Program on KNL based-
system, Oakforest-PACS. Through the experiment, we confirmed the advantage
of task parallelism over the traditional loop-based data parallelism. At the same
time, we found the performance problems on communication between multiple
threads (MPI_THREAD_MULTIPLE). Currently, we are investigating a lower-level
communication API for efficient one-sided communication of PGAS operations in
multithreaded execution environment.

Details of the proposal in this chapter are described in [8].

3.1 OpenMP and XMP Tasklet Directive

While OpenMP originally focuses on work sharing for loops as the parallel
for directive, OpenMP 3.0 introduces task parallelism using the task directive. It
facilitates the parallelization where work is generated dynamically and irregularly
as in recursive structures or unbounded loops. The depend clause on the task
directive is supported from OpenMP 4.0 and specifies data dependencies with
dependence-type in, out, and inout. Task dependency can reduce the global
synchronization of a thread team because it can execute fine-grained synchroniza-
tion between tasks through user-specified data dependencies.
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Fig- 4 Syntax of the #pragma xmp tasklet [clause[, clause] ... | [on { node-ref | template-ref } |

tasklet, taskletwait, (structured-block)
and tasklets directives in .
XMP #pragma xmp taskletwait [on { node-ref | template-ref } |

#pragma xmp tasklets
(structured-block)

where clause is :
{in | out | inout} (variable[, variable] ... |)

To support task parallelism in XMP as in OpenMP, the tasklet direc-
tive? is proposed in XMP 2.0. Figure 4 describes the syntax of the tasklet,
tasklets, and taskletwait directives for the multi-tasking execution in
XMP. The tasklet directive generates a task for the associated structured block
on the node specified by the on clause, and the task is scheduled and immediately
executed by an arbitrary thread in the specified node if there is no task dependency. If
it has any task dependencies, the task execution is postponed until all dependencies
are resolved. These behaviors occur when these tasks are surrounded by tasklets
directive. When these tasks are not surrounded by the tasklets directives, they
are executed sequentially at the specified node. The tasklet directive supports
several clauses for the description of the task dependency. The in, out, and inout
clauses represent the task dependency in a node. When in, out, or inout clause
presents on the tasklet directive, the generated task has each data dependency
in a node. The behavior of these data dependencies is same as OpenMP task
depend clause: flow, anti, and output dependencies.

The taskletwait directive waits on the completion of the generated tasks
on each node. Since the directive does not involve the barrier synchronization, the
barrier directive in XMP is also required in order to guarantee that all tasks of
all nodes are finished at this point. There is an implicit barrier on each node at the
end of the tasklets directive.

In OpenMP, the task dependencies are created according to the order of reading
and writing to data based on the sequential execution in a node. Therefore, the
OpenMP task parallel model cannot be directly applied to describe the dependency
between tasks running in different nodes since threads of each nodes are running in
parallel.

In OmpSs [10], interactions between nodes are described through the MPI
task that is executing MPI communications. Task dependency between nodes
is guaranteed by the completion of MPI point-to-point communication in tasks.
While this approach can satisfy dependencies between nodes, it may cause further
productivity degradation because it forces users to use a combination of two
programming models that are based on different description formats. Therefore,
we propose new directives for communication with tasks in XMP, and they enable

There is the task directive in XMP, it is different from OpenMP’s one.
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users to write easily the multi-tasking execution for clusters by only using language
constructs.

3.2 A Proposal for Global Task Parallel Programming

In order to support multi-tasking execution for distributed memory parallel systems,
we need to perform point-to-point communication within tasks in local task
dependency graphs. While XMP provides some directives for communication, many
of these are performed collectively, and cause an implicit synchronization among
execution nodes. This causes a performance degradation, because tasks participating
in communications, such as broadcast, wait for synchronization until all tasks
are completed. For XMP 2.0, we propose two directives, tasklet gmove and
tasklet reflect, as shown in Fig.5, to describe interactions between nodes
in tasks by point-to-point communication, for inter-node data dependency. These
communications are only synchronized between the sender and receiver of the
communication in each task.

These details are as follow:

tasklet gmove directive: Although this copies the variable from the right-
hand side (RHS) into the left-hand side (LHS) of the associated assignment
statement for local or distributed data like the gmove directive, it is executed in
tasks. The copy operation is basically performed on all execution nodes. However, if
the distributed array is specified at the associated assignment statement, only nodes
with the distributed array execute the operation in the task. The execution nodes can
also be determined by the on clause. When the in, out, or inout clause is present
on the tasklet gmove directive, the generated task has the corresponding data
dependency in a node, similar to the tasklet directive.

tasklet reflect directive: Although this updates halo regions of the array
specified to array-name as in the reflect directive, it is executed in tasks.
For example, when updating one side of a halo region for a one-dimensional
distributed array on two nodes, these communications are separated into four tasks:
the sender of the upper element on node 1, the receiver of the upper halo region
on node 1, the sender of the lower element on node 2, and the receiver of the
lower halo region on node 2. In this directive, data dependency is automatically
added to these generated tasks based on the communication data, because the
boundary index of the distributed array is dynamically determined by the XMP

Fig. 5 Syntax of the #pragma xmp tasklet gmove [clause[, clause] ... ] [on { node-ref | template-ref } |
tasklet gmove and (an assignment statement)

t'aSkhlet' reflect #pragma xmp tasklet reflect (array-name/, array-name]j ... )
directives in XMP [blocksize (reflect-blocksize[, reflect-blocksize] ... ) |

where clause is :
{in | out | inout} (variable[, variable] ... ])
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int A[3], B Node 1 Node 2 Node 3
#pragma xmp nodes P(3)
#pragma xmp template T(0:2) out(A[0])
#pragma xmp distribute T(block) onto P

# lign A[i] with T(i
pragma xmp align A[i] with T(i) naon WU i)
out(A[1]) out(A[1])
#pragma xmp tasklets
{

#pragma xmp tasklet out(A[0]) on P(1) 34
A[0] =0; /* taskA */
#pragma xmp tasklet gmove in(A[0]) out(A[1])

A[1]=A[0]; /* taskB */ —_—
#pragma xmp tasklet gmove in(A[1]) out(B) on P(2:3) dependency

B =A[l]; /* taskC */ TS
} send/recv |:|

Fig. 6 Example of the tasklet and tasklet gmove directives

runtime system. The chunksize clause can be matched the task dependency
descriptions of users using the dependency generated by the tasklet reflect
directive. When users calculate an array in block units, such as in the cache blocking
technique for a node with data dependency, the user-specified task dependency
and generated data dependency for halo exchange may not identically match. By
specifying the chunksize clause, the halo region is distributed logically to equal-
sized contiguous chunks, and data dependencies for the halo exchange are generated
automatically by the XMP runtime system based on the specified chunk size.
Figure 6 presents an example of the tasklet gmove directive. In this
example, array A[] with length three is distributed to three nodes in equal-sized
contiguous blocks. This code creates three kinds of tasks. TaskA and taskC are
executed on nodes specified by the on clause. TaskB is executed on nodes 1
and 2, because these nodes have the specified distributed array A[O] or A[1] in
the associated assignment statement under the tasklet gmove directive. There
is a flow dependency between taskA and taskB on node 1 by A[0]. After the
execution of taskA, taskB sends A/0] to node 2, which is determined by the
distributed array A[1]. In node 2, taskB receives A[0O] from node 1 in A//]. When
the receive operation in taskB is finished, taskC is immediately started, because
the flow dependency of A[I] is satisfied. TaskC sends the A//] to variable B of
node 3. Because the variable B is a local variable for each node, the communication
destination is determined from the execution nodes specified by the on clause.

3.3 Prototype Design of Code Transformation

We have designed a simple code transformation from the code using the proposed
directives to the code with XMP runtime calls using MPI and OpenMP. As for a
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preliminary evaluation, we have made a hand-translated MPI and OpenMP code by
using the proposed transformation.

The tasklets directive is converted into the OpenMP parallel and
single directives. The execution node is determined by the on clause, which is
translated to an if statement. The tasklet gmove and tasklet reflect
directives are converted into MPI_Send/Recv(), and these MPI functions are
executed in OpenMP tasks with data dependency specified by users. In the case that
an MPI blocking call, such as MPI_Send/Recv(), occurs in these codes, a deadlock
may occur depending on the task scheduling mechanism, from the combination
of MPI and OpenMP. To prevent this deadlock, in the actual implementation we
used MPI asynchronous communications, such as MPI_Isend/Irecv(), MPI_Test(),
and the OpenMP taskyield directive, which makes the current task become
suspended at the time point at which it is invoked, and may result in switching
to different tasks.

3.4 Preliminary Performance

We measured the performance on the Oakforest-PACS [11] systems at at the
Joint Center for Advanced High-Performance Computing (JCAHPC) [9], under
cooperation with the Center for Computational Sciences, University of Tsukuba and
the Information Technology Center, the University of Tokyo. This system has 8,208
computing nodes, each of which consists of an Intel Xeon Phi (KNL) processor
and the Intel Omni-Path architecture as an interconnection. In this evaluation, we
selected the Flat and Quadrant modes for KNL. While the Intel Xeon Phi 7250
has 68 cores, a 64 core usage per node is recommended in this system. Some
cores are used to assist the OS, interrupt handling, and for communication progress.
Moreover, in order to avoid OS jitters, only core 0 is set to receive OS interruptions.

We used blocked Cholesky factorization as our benchmark. It calculates the
decomposition of a Hermitian positive-definite blocked matrix into the product of
a lower triangular matrix and its conjugate transpose. The calculation consists of
four BLAS or LAPACK functions, POTRF, TRSM, GEMM, and SYRK, which are
performed in block units. Figure 7 shows the Blocked Cholesky factorization code
in the XMP tasklet directive.

We compare the performance in two parallelization approaches, “Parallel Loop”
and “Task,” in MPI and OpenMP. The “Parallel Loop” version is the conventional
barrier-based implementation, described by work sharing for loops using the
parallel for directive and independent tasks using the task directive without
the depend clause. Although this version of blocked Cholesky factorization is
applied on the overlap of the communication and computation at the process level, it
performs the global synchronization in work sharing. The “Parallel Loop” version of
the Laplace equation solver does not include the overlap of the communication and
computation. The “Task” version is implemented using our proposed model, based
on task dependency using the depend clause, instead of global synchronization.
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1 | double A[nt][nt][ts:xts], B[tsxts], C[nt][ts*ts];

2 | #pragma xmp nodes P(x)

3 | #pragma xmp template T(O:nt—1)

4 | #pragma xmp distribute T(cyclic) onto P

5 | #pragma xmp align A[x][i][] with T(i)

6

7 | #pragma xmp tasklets

8 | for (int k = 0; k < nt; k++) {

9 | #pragma xmp tasklet out(A[k][k]) on T(k)
10 potrf(A[k][k]);

12 | #pragma xmp tasklet gmove in(A[k][k]) out(B) on T(k:)
13 B[:] = ALKI[K][:];

14

15 for (inti=k + 1;i < nt; i++) {

16 | #pragma xmp tasklet in(B) out(A[k][i]) on T(i)

17 trsm(B, A[K][i]);

18

19 | #pragma xmp tasklet gmove in(A[K][i]) out(C[i]) on T(i:)
20 Clil:] = ALK][IL:D

21 }

22 for (inti=k + 1;i < nt; i++) {

23 for (intj=k+ 1;j <i;j++) {

24 | #pragma xmp tasklet in(A[K][i], C[j]) out(A[j1[i]) on T(j)
25 gemm(A[K][i], C[j1, A[jI[i]);

26 }

27 | #pragma xmp tasklet in(A[k][i]) out(A[i][i]) on T(i)

28 syrk(A[K][i], A[il[i]);

29 }

30 | }

Fig. 7 Blocked Cholesky factorization code in the XMP tasklet directive

We also show the result of these benchmarks implemented by MPI and OmpSs as
“Task (OmpSs).” This implementation is described in the in, out, and inout
clauses with the OmpSs task directive. The parallel and single regions are
not required in the OmpSs programming model. Except for these differences, this is
almost the same as the Task version.

We evaluated these benchmarks on the following node configurations. For the
Oakforest-PACS system, it is on 1-32 nodes, one process per node, 64 cores per
process, and one thread per core. The problem size of these benchmarks is set
by a matrix size of 32,768 x 32,768 and a block size of 512 x 512 in double
precision arithmetic. The matrix is distributed by a two-dimensional block-cyclic
data distribution in blocked Cholesky factorization.

Figure 8 illustrates the performance and breakdown of blocked Cholesky factor-
ization on the Oakforest-PACS. The breakdown indicates the average time required
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for each operation performed on all threads, because tasks executed on threads
differ each time the program is executed. The “wait” in the breakdown represents
the waiting time of the thread, including the global synchronization. The “comm”
indicates the time from the start of the communication to the end. In Fig. 8a, the
“Task” version shows a better performance than the barrier-based “Parallel Loop”
implementation. The reason that the “Task” version outperforms the “Parallel Loop”
version is that the global synchronization uses a higher cost for the work sharing of
loops and among tasks, as shown in Fig. 8b. The relative performance of the “Task”
version compared with the ‘“Parallel Loop” version is 123% (Fig. 8).

3.5 Communication Optimization for Manycore Clusters

In the global task parallel programming model, the communication may happen
at each pair of tasks between nodes. In order to enable the communication
in multithreaded environment, we may use MPI_THREAD_MULTIPLE as the
MPI thread-safety level, because tasks executed on threads may communicate
simultaneously. We have examined the basic performance of multithreaded com-
munications by using the Ping-Pong benchmark. This benchmark is based on the
OSU Micro-Benchmarks 5.3.2 [12] developed by the Ohio State University. we
also show the aggregated bandwidth when multiple threads (i.e., two, four, or eight
threads) communicate at the same time. Figure 9 illustrates the communication
performance on the Oakforest-PACS system. The performance of multithreaded
communication with MPI_THREAD_MULTIPLE degrades compared to a single-
threaded communication as the number of threads increases. As with the result
on the Oakforest-PACS system, the performance of communication on a sin-
gle thread is better compared to that for multithreaded communication with
MPI_THREAD_MULTIPLE. Therefore, the communication performance may be
improved if all communications are delegated to the communication thread. To
delegate the communications to a single thread, we create a global queue that is
accessible by all threads, so that the tasks enqueue the communication requests into
this queue and wait for the communication to complete. Meanwhile, the commu-
nication thread dequeues the requests for communication to perform the requested
communications, and checks the communication completion. The communication
thread executes only the communication, and the other threads perform computation
tasks.

Figure 8 shows the performance and breakdown of blocked Cholesky factor-
ization with the communication optimization denoted as “Task (opt).” The “Task
(opt)” version of blocked Cholesky factorization performs better than the multi-
tasking execution with MPI_THREAD_MULTIPLE. The reason for this is that
the communication time decreases compared with the “Task” version, as shown in
Figs. 8, because of the use of the communication thread. The relative performances
compared with the barrier-based “Parallel Loop” implementation improve to 138%
on the Oakforest-PACS systems.
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4 Retrospectives and Challenges for Future PGAS Models

Since 2007, we have been developing the XcalableMP PGAS language and its
reference implementation by the Omni compiler.

In this section, the challenges for future PGAS models are presented with some
retrospectives on our project.

4.1 Low-Level Communication Layer for PGAS Model

PGAS is implemented by Remote Memory Access (RMA) providing light-weight
one-sided communication and low overhead synchronization semantics. For pro-
grammers, both PGAS and RMA are programming interfaces and offer several
constructs such as remote read/write and synchronizations.

Remote Direct Memory Access (RDMA) is a mechanism (operation) to access
data in remote memory by giving address in (shared) address space. It can be
done without involving the CPU or OS at the destination node. Recent advanced
interconnect such as Cray Aries interconnect and Fujitsu Tofu of K computer and
Tofu-D of Fugaku support remote DMA operations which strongly support efficient
one-sided communication.

For the most PGAS runtimes, one-sided communication operations such as
Remote Direct Memory Access (RDMA) functions in the MPI are used to imple-
ment remote put/get operations in the PGAS languages. Although MPI3 provides
several RMA APIs as library interface, the advantages of direct use of RMA/RDMA
Operations are as follows:

* Multiple data transfers can be performed with a single synchronization operation.

* Some irregular communication patterns can be more economically expressed.

e The RDMA can be significantly faster than send/receive on systems with
hardware support for remote memory access.

We found the multiple data transfers for the stencil computation can be optimized
by using a single synchronization operation at the end [13]. As described in Chap. 3,
our XMP Coarray were implemented by both MPI and Fujitsu low-level Tofu API.
In case of MPI, we used “passive target” mode in MPI one-sided communication. It
is noted that the MPI flush operation and synchronization do not sometimes match
to implement “sync_images”, and the complex “window” management to expose
the memory as a coarray. Finally, Fujitsu RDMA interface is much faster than MPI
in the K computer.

Other problem is the communication in the multithreaded environment.
As described in the previous sections, we found the performance problem of
MPI_THREAD_ MULTIPLE. As the connection-less semantics of RDMA would
be suited to communications in multithreaded environment, we believe that a new
design of low-level communication layer would be a desirable solution in near
future.
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4.2 XcalableMP as a DSL for Stencil Applications

The Domain Specific Language (DSL) is a promising approach to make the
programing easy in a specific domain. Many DSLs such as OpenFOAM in CFD
are successful.

Many DSLs are proposed to describe the typical stencil computation. On the
other hand, we propose the mixed-language programming with XcalableMP in
Chap.5. Using this model, the main kernel of the computation can be written
in XcalableMP and other controls, input/output and house-keeping operation are
written by other familiar languages such as Python. In this case, a part of XMP
is thought as a kind of DSL to write the stencil computation with global view
programming.

The advantages of this approach are as follows:

* By using the XMP global view programming model, the stencil computation can
be described in a simple loop based on its original sequential program.

* The stencil communication can be done by the XMP optimized stencil commu-
nication runtime [13].

* The advanced optimization of the stencil operations is enabled by a set of the
directives for the extended stencil optimization such as a loop unrolling and
temporal blocking, added in the latest XcalableMP specification, version 1.4 [14].

4.3 XcalableMP API: Compiler-Free Approach

Although many PGAS languages, such as UPC and Chapel, CAF, have proposed,
it is hard to say that they are fully accepted by the community of parallel program-
ming. Recently, the libraries supporting the PGAS model, such as OpenShmem [15],
GlobalArray [16], even MPI3 RMA, are getting popular for programming some
specific applications. Furthermore, many C++ template-based design for PGAS,
such as UPC++ [17], DASH [18], are proposed as a compiler-free approach, as C++
template provides powerful abstraction mechanism. This approach may increase
portability, clean separation from base compiler optimization, but a problem is that
it is sometimes hard to debug in C++ template once a programmer writes wrong
programs.

The approach of extending the language given by the support of the compiler, the
compiler-approach, may give:

* A new language, or language extension provides easy-to-use and intuitive feature
resulting in better productivity.

» This approach enables the compiler analysis for further optimization, such as
removal of redundant sync and selection of efficient communication.

In reality, the compiler-approach is not easy to be accepted for deployment and
supports in many sites, resulting in the failure of wide dissemination.
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We will have a plan to design the library interface for XcalableMP programming
model, XMP API, which is aiming to provide the most equivalent programming
functions by the set of libraries.

4.4 Global Task Parallel Programming Model for Accelerators

The task-based programming recently supported in OpenMP 4.0 enables to expose
a lot of parallelism by executing several tasks of the program in the form of task-
graph. To accelerate the task-based parallel program by accelerators such as GPU
and FPGA, it is useful for some tasks frequently executed in parallel to be offloaded
to accelerators as an asynchronous task executed by accelerators.

In previous section, the global task parallel programming model is presented.
The next step will be that this global task parallel programming model is extended
to tasks offloaded to accelerators attached to each node in accelerated clusters.

Exploration of new high-performance architectures from programing model’s
point of view is an important challenge. Future parallel architecture will be more
heterogenous having many kinds of accelerators and devices attached to the nodes
and directly connected between accelerators by some dedicated interconnect. To
program such a complex and heterogenous parallel system, the global task parallel
programming model will give a flexible and decomposable model to exploit such
heterogenous high-performance architecture.
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