
Three-Dimensional Fluid Code
with XcalableMP

Hitoshi Sakagami

Abstract In order to adapt parallel computers to general convenient tools for
computational scientists, a high-level and easy-to-use portable parallel program-
ming paradigm is mandatory. XcalableMP, which is proposed by the XcalableMP
Specification Working Group, is a directive-based language extension for Fortran
and C to easily describe parallelization in programs for distributed memory
parallel computers. The Omni XcalableMP compiler, which is provided as a
reference XcalableMP compiler, is currently implemented as a source-to-source
translator. It converts XcalableMP programs to standard MPI programs, which
can be easily compiled by the native Fortran compiler and executed on most of
parallel computers. A three-dimensional Eulerian fluid code written in Fortran is
parallelized by XcalableMP using two different programming models with the
ordinary domain decomposition method, and its performances are measured on
the K computer. Programs converted by the Omni XcalableMP compiler prevent
native Fortran compiler optimizations and show lower performance than that of
hand-coded MPI programs. Finally almost the same performances are obtained
by using specific compiler options of the native Fortran compiler in the case of a
global-view programming model, but performance degradation is not improved by
specifying any native compiler options when the code is parallelized by a local-view
programming model.

1 Introduction

Computational scientists usually want to concentrate their attention on their essen-
tial research. Parallel programming is never an objective for them even if com-
putational powers of parallel computers are necessary to advance their subjects,
and this dilemma is annoying them. In order to adapt the parallel computer from a

H. Sakagami (�)
National Institute for Fusion Science, Toki, Japan
e-mail: sakagami.hitoshi@nifs.ac.jp

© The Author(s) 2021
M. Sato (ed.), XcalableMP PGAS Programming Language,
https://doi.org/10.1007/978-981-15-7683-6_6

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7683-6_6&domain=pdf
mailto:sakagami.hitoshi@nifs.ac.jp
https://doi.org/10.1007/978-981-15-7683-6_6

166 H. Sakagami

special kind of machines to general convenient tools for computational scientists, a
high-level and easy-to-use portable parallel programming paradigm is mandatory.
XcalableMP (XMP) [1], which is proposed by the XcalableMP Specification
Working Group, is directive-based language extensions for Fortran and C to easily
describe parallelization in programs for distributed memory parallel computers. The
XMP/F compiler [2], which is provided as a reference XMP Fortran compiler, is
currently implemented as a source-to-source translator. It converts XMP Fortran
programs to standard MPI Fortran programs, which can be easily compiled by the
native Fortran compiler and executed on most of parallel computers.

XMP supports typical data/task parallelization methods with simple directives
under a “global-view” programming model, which is partially based on experiences
of High Performance Fortran [3, 4] and Fujitsu XPF (VPP FORTRAN) [5]. XMP
also supports PGAS (Partitioned Global Address Space) features like Coarray
Fortran [6] as a “local-view” programming model. In addition, combinations of
XMP and OpenMP directives are consistently maintained by the XMP/F compiler.
An essential design principle of XMP is “performance awareness,” which means
that all communications or synchronizations are taken by explicit directives or
Coarray statements and no implicit actions are taken.

First, we used XMP Fortran to parallelize the code using the global-view
programming model, and measured its performance on the K computer. We found
that programs converted by the XMP/F compiler prevent optimizations by the
native Fortran compiler and show lower performance than that of hand-coded
MPI programs, but finally almost the same performances are obtained by using
specific compiler options of the native Fortran compiler. Next we parallelized the
code using the local-view programming model, and also measured its performance
on the K computer. We found that translated programs prevent optimizations by
the native Fortran compiler and show lower performance than that of the global-
view programming model programs. This degradation cannot be solved by simply
specifying native compiler options at this moment, and improvements of the XMP/F
compiler are expected.

2 Global-View Programming Model

IMPACT-3D is a three-dimensional Eulerian fluid code written in Fortran and
it performs compressible and inviscid fluid computation to simulate convergent
asymmetric flows related to laser fusion [7]. A Cartesian coordinate system is
employed and an explicit 5-point stencil in one direction is used in IMPACT-3D
with uniform grid spacing. So it is easy to parallelize the code with the ordinary
domain decomposition method. Communications between neighboring subdomains
are needed to exchange boundary data.

As the global-view programming model is a directive oriented approach, pro-
grams can be incrementally parallelized and different parallelization methods can
be easily tried. Although IMPACT-3D is actually parallelized by three different

Three-Dimensional Fluid Code with XcalableMP 167

methods, original source codes are completely same and there are a few directive
differences among three methods.

2.1 Domain Decomposition Methods

The code is parallelized by three different domain decomposition methods, namely
the domain is divided in (a) only Z direction, (b) both Y and Z directions, and (c) all
of X, Y, and Z directions, which are shown in Fig. 1.

Assume LX, LY, and LZ are system mesh sizes of the code in X, Y, and Z
directions, and NX, NY, and NZ are division numbers in X, Y, and Z directions,
respectively. In the case of only Z domain decomposition method, total amount of
communicated data per domain is proportional to LX · LY , which is not depended
on any division numbers, and communication occurs twice per time step. On the
other hand, data proportional to (LX · LY) ÷ NY must be communicated twice
and that of (LZ · LX) ÷NZ is also communicated twice per domain per time step
in both Y and Z domain decomposition method. In the case of all of X, Y, and Z
domain decomposition method, data proportional to (LX ·LY)÷ (NX ·NY), (LZ ·
LX)÷ (NZ ·NX), and (LY ·LZ)÷ (NY ·NZ)must be communicated per domain
per time step twice, twice and three times, respectively. Thus total communication
costs in three different domain decomposition methods are depended on a trade-off
between latency and speed. Additional communication is one reduction operation
to obtain a maximum scalar value in whole simulation system.

A node array that corresponds with physical compute units in parallel computer
is defined by node directive, three-dimensional Fortran arrays are decomposed with
template, distribute, and align directives, corresponding DO loops are parallelized
by loop directive and communications between neighboring subdomains are imple-
mented by shadow and reflect directives. The code can be parallelized by using the
“global-view” programming model directives only. Typical XMP Fortran programs
are shown for each decomposition method, in Listing 1 for only Z direction,
Listing 2 for both Y and Z directions, and Listing 3 for all of X, Y, and Z directions.

Fig. 1 IMPACT-3D is parallelized by three different domain decomposition methods. The domain
is divided in (a) only Z direction, (b) both Y and Z directions, and (c) all of X, Y, and Z directions

168 H. Sakagami

lx, ly, lz are Fortran array size of first, second, third dimension, and nx, ny, nz are a
number of division in X, Y, Z directions, respectively. These are also variable names
in the program shown in Listings.

The code is also hand-coded with MPI using the same domain decomposition
methods to compare performances.

Listing 1 Typical XMP programs using the global-view programming model for only Z domain
decomposition method

1 integer parameter :: lx=..., ly=..., lz=...
2 integer parameter :: nz=...
3 !$XMP NODES proc(nz)
4 !$XMP TEMPLATE t(lx,ly,lz)
5 !$XMP DISTRIBUTE t(*,*,BLOCK) ONTO proc
6 real*8 :: physval(6,lx,ly,lz)
7 real*8 :: ram
8 !$XMP ALIGN (*,*,*,k) WITH t(*,*,k) :: physval
9 !$XMP SHADOW (0,0,0,1) :: physval

10 ...
11 !$XMP LOOP (iz) ON t(*,*,iz)
12 !$OMP PARALLEL DO PRIVATE(iy,ix)
13 do iz = 1, lz
14 do iy = 1, ly
15 do ix = 2, lx-1
16 ...
17 physval(..,ix,iy,iz) = ... &
18 physval(..,ix-1,iy,iz) ... physval(..,ix+1,iy,iz)
19 ...
20 ...
21 !$XMP LOOP (iz) ON t(*,*,iz)
22 !$OMP PARALLEL DO PRIVATE(iy,ix)
23 do iz = 1, lz
24 do iy = 2, ly-1
25 do ix = 1, lx
26 ...
27 physval(..,ix,iy,iz) = ... &
28 physval(..,ix,iy-1,iz) ... physval(..,ix,iy+1,iz)
29 ...
30 ...
31 !$XMP REFLECT (physval)
32 !$XMP LOOP (iz) ON t(*,*,iz)
33 !$OMP PARALLEL DO PRIVATE(iy,ix)
34 do iz = 2, lz-1
35 do iy = 1, ly
36 do ix = 1, lx
37 ...
38 physval(..,ix,iy,iz) = ... &
39 physval(..,ix,iy,iz-1) ... physval(..,ix,iy,iz+1)
40 ...
41 ...
42 !$XMP LOOP (iz) ON t(*,*,iz) REDUCTION(max:ram)
43 !$OMP PARALLEL DO REDUCTION(max:ram) PRIVATE(iy,ix)

Three-Dimensional Fluid Code with XcalableMP 169

44 do iz = 1, lz
45 do iy = 1, ly
46 do ix = 1, lx
47 ram = max(ram, ...)

Listing 2 Typical XMP programs using the global-view programming model for both Y and Z
domain decomposition methods

1 integer parameter :: lx=..., ly=..., lz=...
2 integer parameter :: ny=..., nz=...
3 !$XMP NODES proc(ny,nz)
4 !$XMP TEMPLATE t(lx,ly,lz)
5 !$XMP DISTRIBUTE t(*,BLOCK,BLOCK) ONTO proc
6 real*8 :: physval(6,lx,ly,lz)
7 real*8 :: ram
8 !$XMP ALIGN (*,*,j,k) WITH t(*,j,k) :: physval
9 !$XMP SHADOW (0,0,1,1) :: physval

10 ...
11 !$XMP LOOP (iy,iz) ON t(*,iy,iz)
12 !$OMP PARALLEL DO PRIVATE(iy,ix)
13 do iz = 1, lz
14 do iy = 1, ly
15 do ix = 2, lx-1
16 ...
17 physval(..,ix,iy,iz) = ... &
18 physval(..,ix-1,iy,iz) ... physval(..,ix+1,iy,iz)
19 ...
20 ...
21 !$XMP REFLECT (physval) width(0,0,1,0)
22 !$XMP LOOP (iy,iz) ON t(*,iy,iz)
23 !$OMP PARALLEL DO PRIVATE(iy,ix)
24 do iz = 1, lz
25 do iy = 2, ly-1
26 do ix = 1, lx
27 ...
28 physval(..,ix,iy,iz) = ... &
29 physval(..,ix,iy-1,iz) ... physval(..,ix,iy+1,iz)
30 ...
31 ...
32 !$XMP REFLECT (physval) width(0,0,0,1)
33 !$XMP LOOP (iy,iz) ON t(*,iy,iz)
34 !$OMP PARALLEL DO PRIVATE(iy,ix)
35 do iz = 2, lz-1
36 do iy = 1, ly
37 do ix = 1, lx
38 ...
39 physval(..,ix,iy,iz) = ... &
40 physval(..,ix,iy,iz-1) ... physval(..,ix,iy,iz+1)
41 ...
42 ...
43 !$XMP LOOP (iy,iz) ON t(*,iy,iz) REDUCTION(max:ram)
44 !$OMP PARALLEL DO REDUCTION(max:ram) PRIVATE(iy,ix)

170 H. Sakagami

45 do iz = 1, lz
46 do iy = 1, ly
47 do ix = 1, lx
48 ram = max(ram, ...)

Listing 3 Typical XMP programs using the global-view programming model for all of X, Y, and
Z domain decomposition method

1 integer parameter :: lx=..., ly=..., lz=...
2 integer parameter :: nx=..., ny=..., nz=...
3 !$XMP NODES proc(nx,ny,nz)
4 !$XMP TEMPLATE t(lx,ly,lz)
5 !$XMP DISTRIBUTE t(BLOCK,BLOCK,BLOCK) ONTO proc
6 real*8 :: physval(6,lx,ly,lz)
7 real*8 :: ram
8 !$XMP ALIGN (*,i,j,k) WITH t(i,j,k) :: physval
9 !$XMP SHADOW (0,1,1,1) :: physval

10 ...
11 !$XMP REFLECT (physval) width(0,1,0,0)
12 !$XMP LOOP (ix,iy,iz) ON t(ix,iy,iz)
13 !$OMP PARALLEL DO PRIVATE(iy,ix)
14 do iz = 1, lz
15 do iy = 1, ly
16 do ix = 2, lx-1
17 ...
18 physval(..,ix,iy,iz) = ... &
19 physval(..,ix-1,iy,iz) ... physval(..,ix+1,iy,iz)
20 ...
21 ...
22 !$XMP REFLECT (physval) width(0,0,1,0)
23 !$XMP LOOP (ix,iy,iz) ON t(ix,iy,iz)
24 !$OMP PARALLEL DO PRIVATE(iy,ix)
25 do iz = 1, lz
26 do iy = 2, ly-1
27 do ix = 1, lx
28 ...
29 physval(..,ix,iy,iz) = ... &
30 physval(..,ix,iy-1,iz) ... physval(..,ix,iy+1,iz)
31 ...
32 ...
33 !$XMP REFLECT (physval) width(0,0,0,1)
34 !$XMP LOOP (ix,iy,iz) ON t(ix,iy,iz)
35 !$OMP PARALLEL DO PRIVATE(iy,ix)
36 do iz = 2, lz-1
37 do iy = 1, ly
38 do ix = 1, lx
39 ...
40 physval(..,ix,iy,iz) = ... &
41 physval(..,ix,iy,iz-1) ... physval(..,ix,iy,iz+1)
42 ...
43 ...
44 !$XMP LOOP (ix,iy,iz) ON t(ix,iy,iz) REDUCTION(max:ram)

Three-Dimensional Fluid Code with XcalableMP 171

45 !$OMP PARALLEL DO REDUCTION(max:ram) PRIVATE(iy,ix)
46 do iz = 1, lz
47 do iy = 1, ly
48 do ix = 1, lx
49 ram = max(ram, ...)

2.2 Performance on the K Computer

As one node consists of 8 cores in the K computer, one MPI process is dispatched
onto each node and each process performs computations with 8 threads. We run
both XMP and MPI codes with three different decomposition methods and evaluate
the weak scaling on the K computer using Omni XcalableMP 0.7.0 and Fujitsu
Fortran K-1.2.0.15. A number of cores for execution and corresponding simulation
parameters are summarized in Table 1.

Performance are measured by a hardware monitor installed on the K computer,
and MFLOPS/PEAK, Memory throughput/PEAK and SIMD execution usage are
obtained.

2.2.1 Comparison with Hand-Coded MPI Program

MFLOPS/PEAK values for all six cases, namely (MPI, XMP) × (only Z, both Y
and Z, all of X, Y, and Z) are shown in Fig. 2.

Performances of XMP codes are the same as those of MPI codes, and small
differences among three decomposition methods are found. But we can get only
8~9% of peak performance of the K computer. From the hardware monitor, we
found that SIMD execution usage was less than 5% in all cases, and this could
degrade the performance. Most cost intensive DO loops in IMPACT-3D include
IF statements, which are needed to correctly treat extremely slow fluid velocity
regardless of XMP andMPI codes, and the IF statement interrupts the native Fortran
compiler to generate SIMD instructions inside the DO loop. Thus relatively low
performance is obtained.

Table 1 Simulation parameters for global-view programming model

Only Z Both Y and Z All of X, Y and Z

#Core lx=ly=lz nz ny nz nx ny nz

256 1024 32 8 4 4 4 2

2048 2048 256 16 16 8 8 4

16,384 4096 64 32 16 16 8

131,072 8192 128 128 32 32 16

172 H. Sakagami

Fig. 2 MFLOPS/PEAK measured by the hardware monitor installed on the K computer. Solid and
dash lines indicate performances of XMP and MPI codes, respectively. Colors of light gray, gray,
and black indicate only Z domain decomposition, both Y and Z domain decomposition, and all of
X, Y, and Z domain decomposition methods, respectively

2.2.2 Optimization for SIMD

As the true rate of the IF statement is nearly 100% in IMPACT-3D, speculative
execution of SIMD instruction causes almost no overhead. So forcing the compiler
to generate the SIMD instructions could be useful to enhance the performance, and
it can be done with simd=2 compiler option. All codes are recompiled with that
option and rerun. SIMD execution usage increases up to around 50% in all cases,
and we can expect performance improvement. MFLOPS/PEAK values for all cases
are shown in Fig. 3.

Small differences among three decomposition methods are also found with this
compiler option. MPI code performance is improved and we can get up to 20%
of the peak performance. XMP code performance is also improved, but these
are below 15% even MPI and XMP code performance is almost same without
simd=2 option. According to compiler diagnostic of the native Fortran compiler,
the software pipelining is adopted for cost intensive DO loops in the MPI code, but
it is not applied for the source code converted by the XMP/F compiler from the
XMP code. As the XMP/F compiler converts a simple DO statement of “do i = is,
ie” to more general form “do i1 = xmp_s1, xmp_e1, xmp_d1” and the native Fortran
compiler cannot optimize the DO loop because do increment is given by a variable
and it is unknown at compilation time. So we improved the XMP/F compiler to
generate “do i1 = xmp_s1, xmp_e1, 1” form when the do increment is not given
and supposed to be one in the XMP code. As a result, the software pipelining is
also adopted for cost intensive DO loops converted by the XMP/F compiler, but no
performance improvement is obtained. AlthoughMemory throughput/PEAK values

Three-Dimensional Fluid Code with XcalableMP 173

Fig. 3 MFLOPS/PEAK measured by the hardware monitor installed on the K computer with
SIMD optimization by simd=2 compiler option. Solid and dash lines indicate performances of
XMP and MPI codes, respectively. Colors of light gray, gray, and black indicate only Z domain
decomposition, both Y and Z domain decomposition, and all of X, Y, and Z domain decomposition
methods, respectively

of MPI codes are 55%, those of XMP codes are only 37% and this low memory
throughput is one of candidates for low sustained performance.

2.2.3 Optimization for Allocatable Arrays

In the converted code by the XMP/F compiler, all Fortran arrays are treated as
allocatable arrays even the original code uses static arrays. The allocatable array
prevents the native Fortran compiler from optimizing the DO loop with prefetch
instructions because the array size cannot be determined at compilation time, and
it could cause low memory throughput. All Fortran arrays in the hand-coded MPI
code for XYZ decomposition are just replaced by allocatable arrays and we check a
performance difference. Performance of the MPI code are shown in Fig. 4 for static
arrays (light gray dash) and allocatable arrays (gray dash).

MFLOPS/PEAK values are dropped from 20% to 15%, and this performance
degradation without the prefetch instructions is confirmed. To force the native
Fortran compiler to perform the prefetch optimization, we can use prefetch_stride
compiler option. All codes are recompiled with prefetch_stride compiler option and
rerun. Performance improvements by this compiler option are shown in Fig. 4 for
both MPI (gray dash to black dash) and XMP (gray solid to black solid) codes.
MFLOPS/PEAK values are improved by 2~3% with the prefetch optimization.
Finally we can get almost the same performance with XMP as that of MPI when
allocatable arrays are used, but efforts to shrink the performance gap between static
and allocatable arrays are still needed.

174 H. Sakagami

Fig. 4 IMFLOPS/PEAK measured by the hardware monitor installed on the K computer with
prefetch optimization by prefetch_stride compiler option. Solid and dash lines indicate perfor-
mances of XMP and MPI codes, respectively. Colors of light gray, gray, and black indicate static
arrays, allocatable arrays, and allocatable arrays with prefetch optimization, respectively

3 Local-View Programming Model

In the local-view programmingmodel, communications among domains are written
by Fortran Coarray assignment statements, with which two types of one-sided
communications for local data, namely put and get, are adopted. For the sake of
simplicity, we focus on the all of X, Y, and Z domain decomposition method in this
section.

3.1 Communications Using Coarray

Just same as the MPI program, DO loop boundaries in the original source code must
be modified and communications must be explicitly written by Coarray assignment
statements. Typical XMP Fortran programs using put communications are shown
in Listing 4, which is corresponding to Listing 3. Division numbers are defined
just as variables, not parameters to easily change them by input data without
recompilations. As Coarray features in Fortran 2008, which is supported by the
XMP/F compiler at that time, do not include reduction operations, the code to
obtain the maximum value of the scalar variable in whole simulation system must
be hand-coded. But Coarray features in Fortran 2015 support reduction operations
by intrinsic subroutines, and these codes are simply replaced with co_max intrinsic
subroutine, which is shown in Listing 5. These intrinsic subroutines are partially
supported by the current XMP/F compiler.

Three-Dimensional Fluid Code with XcalableMP 175

Listing 4 Typical XMP programs using the local-view programming model with put communi-
cations for all of X, Y, and Z domain decomposition method

1 integer, parameter :: lx=..., ly=..., lz=...
2 real*8 :: ram
3 real*8, allocatable :: rami(:)
4 real*8, allocatable :: physval(6,:,:,:)[:]
5 real*8 :: ramc[*]
6 ...
7 limgn = THIS_IMAGE()
8 lsx = lx / nx
9 lsy = ly / ny

10 lsz = lz / nz
11 linxp = limgn + 1
12 linxm = limgn - 1
13 linyp = limgn + nx
14 linym = limgn - nx
15 linzp = limgn + (nx*ny)
16 linzm = limgn - (nx*ny)
17 allocate(physval(6,0:lsx+1,0:lsy+1,0:lsz+1)[*])
18 allocate(rami(nx*ny*nz))
19 ...
20 physval(:,lsx+1,:,:)[linxm] = physval1(:,1,:,:)
21 physval(:,0,:,:)[linxp] = physval1(:,lsx,:,:)
22 SYNC ALL
23 !$OMP PARALLEL DO PRIVATE(iy,ix)
24 do iz = 1, lsz
25 do iy = 1, lsy
26 do ix = 1, lsx
27 ...
28 physval(..,ix,iy,iz) = ... &
29 physval(..,ix-1,iy,iz) ... physval(..,ix+1,iy,iz)
30 ...
31 ...
32 physval(:,:,lsy+1,:)[linym] = physval1(:,:,1,:)
33 physval(:,:,0,:)[linyp] = physval1(:,:,lsy,:)
34 SYNC ALL
35 !$OMP PARALLEL DO PRIVATE(iy,ix)
36 do iz = 1, lsz
37 do iy = 1, lsy
38 do ix = 1, lsx
39 ...
40 physval(..,ix,iy,iz) = ... &
41 physval(..,ix,iy-1,iz) ... physval(..,ix,iy+1,iz)
42 ...
43 ...
44 physval(:,:,:,lsz+1)[linzm] = physval1(:,:,:,1)
45 physval(:,:,:,0)[linzp] = physval1(:,:,:,lsz)
46 SYNC ALL
47 !$OMP PARALLEL DO PRIVATE(iy,ix)
48 do iz = 1, lsz
49 do iy = 1, lsy
50 do ix = 1, lsx

176 H. Sakagami

51 ...
52 physval(..,ix,iy,iz) = ... &
53 physval(..,ix,iy,iz-1) ... physval(..,ix,iy,iz+1)
54 ...
55 ...
56 !$OMP PARALLEL DO REDUCTION(max:ram) PRIVATE(iy,ix)
57 do iz = 1, lsz
58 do iy = 1, lsy
59 do ix = 1, lsx
60 ram = max(ram, ...)
61 ...
62 ramc = ram
63 SYNC ALL
64 if(limgn .eq. 1) then
65 rami(1) = ram
66 do i = 2, nx*ny*nz
67 rami(i) = ramc[i]
68 end do
69 ram = max(rami)
70 ramc = ram
71 end if
72 SYNC ALL
73 if(limgn .ne. 1) then
74 ram = ramc[1]
75 end if

Listing 5 Reduction operations can be replaced by an intrinsic subroutine

1 ...
2 call CO_MAX(ram)
3 ...

Differences of programs between put and get communications are only in Coar-
ray assignment and related sync all statements, and the other parts are completely
same. Ttypical XMP Fortran programs related with get communications are shown
in Listing 6. Note that related sync all statement must be written after put or before
get communications.

Listing 6 Typical XMP programs using the local-view programming model with get communica-
tions for all of X, Y, and Z domain decomposition method

1 ...
2 SYNC ALL
3 physval(:,lsx+1,:,:) = physval1(:,1,:,:)[linxp]
4 physval(:,0,:,:) = physval1(:,lsx,:,:)[linxm]
5 ...
6 SYNC ALL
7 physval(:,:,lsy+1,:) = physval1(:,:,1,:)[linyp]
8 physval(:,:,0,:) = physval1(:,:,lsy,:)[linym]

Three-Dimensional Fluid Code with XcalableMP 177

9 ...
10 SYNC ALL
11 physval(:,:,:,lsz+1)= physval1(:,:,:,1)[linzp]
12 physval(:,:,:,0)= physval1(:,:,:,lsz)[linzm]
13 ...

3.2 Performance on the K Computer

We run three XMP codes using the global-view programming model, and the
local-view programming model with put and get communications, and local-
view communications are implemented on Fujitsu RDMA. Each process performs
computations with 8 threads just like before and we evaluate the weak scaling on
the K computer using Omni XcalableMP 0.9.1 and Fujitsu Fortran K-1.2.0.18.
A number of cores for execution and corresponding simulation parameters are
summarized in Table 2 and performance are also measured by the hardware monitor
installed on the K computer. As versions of both Omni XcalableMP and Fujitsu
Fortran compilers are different from those of previous section, we also rerun the
global-view programming model code. MFLOPS/PEAK values for all cases are
shown in Fig. 5.

Performances using the global-view programming model are almost same as
those in previous section, but the local-view programming model shows very low
performances, namely 3% of peak performance of the K computer. From the
hardware monitor, we found that SIMD execution usage was less than 0.2% in
local-view programming model cases, this means that cost intensive DO loops
in IMPACT-3D are not SIMDized at all even with simd=2 and prefetch_stride
native Fortran compiler options. All Fortran allocatable coarrays in the local-view
programming model codes are converted to pointer arrays by the XMP/F compiler.
The pointer array prevents the native Fortran compiler from SIMDizing the DO
loop even it is forced to SIMDize the loop by simd=2 compiler option because
the compiler thinks that variables may be overlapped and SIMD execution causes
incorrect calculations. To tell the compiler that variables are not overlapped, we can
specify noalias option and SIMD execution usage is improved to 15%. But prefetch
instructions are still suppressed and the pointer array may prevent other compiler
optimizations, performances are not improved at all.

Table 2 Simulation
parameters for local-view
programming model

All of X, Y and Z

#Core lx=ly=lz nx ny nz

256 1024 4 4 2

2048 2048 8 8 4

16,384 4096 16 16 8

178 H. Sakagami

Fig. 5 MFLOPS/PEAK measured by the hardware monitor installed on the K computer. Gray
dash line indicates performance of the global-view programming model. Gray and black solid lines
indicate performances of the local-view programming model with put and get communications,
respectively

4 Summary

We have parallelized a three-dimensional fluid code with XMP Fortran using the
global-view programming model and compared XMP performances with those of
the hand-coded MPI program on the K computer. We found that performances of
XMP programs are the same as those of MPI programs but these are only 8~9% of
peak performance of the K computer. It was found that this relative low performance
is due to lack of SIMD execution according to SIMD execution usage by the
hardware monitor. We forced the native Fortran compiler to SIMDize loops with
the specific compiler option, and found that performance of MPI programs reach
to 20% of peak performance even those of XMP programs remain around 15%.
It was found that this relative low performance is due to low memory throughput
according to Memory throughput/PEAK by the hardware monitor. Finally we could
get almost the same performance of XMP codes as those of MPI codes by using
additional specific compiler option of the native Fortran compiler.

Next we parallelized the code using the local-view programmingmodel, and also
measured its performance on the K computer. We found that translated programs
prevent SIMDization by the native Fortran compiler and show only 3% of peak
performance of the K computer, much lower performance than that of the global-
view programming model programs. This degradation cannot be solved by simply
specifying native compiler options at this moment, and improvements of the XMP/F
compiler are expected.

These kinds of advanced performance optimization techniques of the native
Fortran compiler are not clear and may be somewhat difficult for computational

Three-Dimensional Fluid Code with XcalableMP 179

scientists, but XMP programming still requires much less efforts than those for MPI
programming.

Acknowledgments This work was partially supported by JSPS Grant-in-Aid for Scientific
Research (C) (25400539). Part of the research was funded by MEXT’s program for the Devel-
opment and Improvement for the Next Generation Ultra High-Speed Computer System, under its
Subsidies for Operating the Specific Advanced Large Research Facilities.

References

1. XcalableMP, http://www.xcalablemp.org/
2. Omni XMP compiler, http://omni-compiler.org/xcalablemp.html
3. High Performance Fortran, http://hpff.rice.edu/
4. K. Kennedy, C. Koelbel, H. Zima, Proceedings of the 3rd ACM SIGPLAN Conference on History

of Programming Languages (2007), pp. 7-1–7-22
5. Y. Zhang, H. Iwashita, K. Ishii, M. Kaneko, T. Nakamura, K. Hotta, Proceedings of the 6th

International Workshop on OpenMP (2010), pp. 133–148
6. J. Reid, Coarrays in the Next Fortran Standard, ISO/IEC JTC1/SC22/WG5 N1787 (2009)
7. H. Sakagami, H. Murai, Y. Seo, M. Yokokawa, IEEE/ACM SC2002 Conference, pap147 (2002)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://www.xcalablemp.org/
http://omni-compiler.org/xcalablemp.html
http://hpff.rice.edu/
http://creativecommons.org/licenses/by/4.0/

	Three-Dimensional Fluid Code with XcalableMP
	1 Introduction
	2 Global-View Programming Model
	2.1 Domain Decomposition Methods
	2.2 Performance on the K Computer
	2.2.1 Comparison with Hand-Coded MPI Program
	2.2.2 Optimization for SIMD
	2.2.3 Optimization for Allocatable Arrays

	3 Local-View Programming Model
	3.1 Communications Using Coarray
	3.2 Performance on the K Computer

	4 Summary
	References

