Skip to main content

Research on Online Leakage Assessment

  • Conference paper
  • First Online:
Book cover Data Science (ICPCSEE 2020)

Abstract

Leakage assessment is the most common approach applied for assessing side-channel information leakage and validating the effectiveness of side-channel countermeasures. Established evaluation approaches are usually based on Test Vector Leakage Assessment (TVLA) that deployed in a divide and conquer flow with offline computations, which causes two apparent shortcomings in required memory and time. In this paper, a lightweight framework of online leakage assessment is proposed. The problems were analyzed and the evaluation approach was further validated with a Field Programmable Gate Array (FPGA). The experimental results show that it can implement online processing on newly collected data, and instantly stop to give the result when detecting credible leakage. The online leakage assessment can significantly economize on memory and time. It has good performance when there is limited memory or real-time evaluations are needed.

The authors would like to thank Information Science Laboratory Center of USTC for the hardware/software services. This work was supported by National Natural Science Foundation of China (Nos. 61972370 and 61632013), Fundamental Research Funds for Central Universities in China (No. WK3480000007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bache, F., Plump, C., Güneysu, T.: Confident leakage assessment – a side-channel evaluation framework based on confidence intervals. In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1117–1122 (2018)

    Google Scholar 

  2. Bache, F., Plump, C., Wloka, J., Güneysu, T., Drechsler, R.: Evaluation of (power) side-channels in cryptographic implementations. it - Inform. Technol. 61(1), 15–28 (2019). https://www.degruyter.com/view/journals/itit/61/1/article-p15.xml

  3. Becker, G.: Test vector leakage assessment (TVLA) methodology in practice. In: International Cryptographic Module Conference (2013). http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf

  4. Chan, T.F., Golub, G.H., Leveque, R.J.: Algorithms for computing the sample variance: analysis and recommendations. Am. Stat. 37(3), 242–247 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Coron, J.-S., Kocher, P., Naccache, D.: Statistics and secret leakage. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45472-1_12

    Chapter  Google Scholar 

  6. De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.: Does coupling affect the security of masked implementations? In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp. 1–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64647-3_1

    Chapter  Google Scholar 

  7. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking AES with \(d+1\) shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_10

    Chapter  MATH  Google Scholar 

  8. Ding, A.A., Chen, C., Eisenbarth, T.: Simpler, faster, and more robust T-test based leakage detection. In: Standaert, F.-X., Oswald, E. (eds.) COSADE 2016. LNCS, vol. 9689, pp. 163–183. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43283-0_10

    Chapter  Google Scholar 

  9. Ding, A.A., Zhang, L., Durvaux, F., Standaert, F.-X., Fei, Y.: Towards sound and optimal leakage detection procedure. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS 2017. LNCS, vol. 10728, pp. 105–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75208-2_7

    Chapter  Google Scholar 

  10. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for side-channel resistance validation. In: NIST non-invasive attack testing workshop (2011). http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf

  11. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, 2nd edn. (2002). ISBN: 0898715210

    Google Scholar 

  12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  13. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Fast leakage assessment. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 387–399. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_19

    Chapter  Google Scholar 

  14. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_25

    Chapter  Google Scholar 

  15. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation. In: Proceedings Design, Automation and Test in Europe Conference and Exhibition, France, vol. 1, pp. 246–251 (2004)

    Google Scholar 

  16. Wang, A., Zhang, Yu., Tian, W., Wang, Q., Zhang, G., Zhu, L.: Right or wrong collision rate analysis without profiling: full-automatic collision fault attack. Sci. China Inf. Sci. 61(3), 1–11 (2017). https://doi.org/10.1007/s11432-016-0616-4

    Article  Google Scholar 

  17. Xilinx: UG480-7 series FPGAs and Zynq-7000 SoC XADC dual 12-bit 1 MSPS Analog-to-Digital Converter. https://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XADC.pdf

  18. Xilinx: UG960-7 series FPGA AMS targeted reference design. https://www.xilinx.com/support/documentation/boards_and_kits/ams101/2013_3/ug960-7series-ams-trd-user-guide.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguang Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Z. et al. (2020). Research on Online Leakage Assessment. In: Qin, P., Wang, H., Sun, G., Lu, Z. (eds) Data Science. ICPCSEE 2020. Communications in Computer and Information Science, vol 1258. Springer, Singapore. https://doi.org/10.1007/978-981-15-7984-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7984-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7983-7

  • Online ISBN: 978-981-15-7984-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics