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Preface

The tracking-control problems of nonlinear systems have been widely encountered
in various applications, such as flight control, pendulum control, and robot control.
For the purpose of tracking control, we need to design a controller in terms
of control input for nonlinear systems such that the actual output can track the
desired output. For solving the tracking-control problems of nonlinear systems, a
number of methods have been presented and investigated, such as the input—output
linearization (IOL) method, the optimal control method, and the backstepping
method. However, most of the conventional control methods are relatively complex
for their design procedures of controllers and practical implementations. Therefore,
it is necessary and significant for practitioners to propose, develop, and investigate
a simple and effective control method for the design of controllers.

From the viewpoint of time-varying (or say, dynamic) problem solving, the
tracking control of nonlinear systems can be investigated in a unique manner. In
recent years, a special class of neural dynamics has been exploited for the online
solution of time-varying problems. As this neural-dynamic method is proposed
by Zhang et al. and zeroes out each element of error function, it is called Zhang
dynamics (also known as zeroing dynamics, ZD). Specifically, ZD is designed on
the basis of an indefinite matrix-/vector-/scalar-valued error function (termed Zhang
function, ZF) and takes full advantage of the time-derivative information of time-
varying parameters. The ZD method is an error-based dynamic method, of which
the core is the ZD design formula that forces each element of ZF to converge to
zero exponentially. Such an idea can actually be found in the control field, i.e.,
forcing the error between the actual output and the desired output to be zero (or
near zero in practice). Differing from the ZD, the conventional gradient dynamics
(GD) is designed on the basis of a scalar-valued nonnegative error function (termed
energy function, EF). The GD method is an energy-based minimization method,
of which the core is the GD design formula such that the minimum point of the
EF can be reached along the negative gradient direction. Besides, the GD method
designed intrinsically for time-invariant (or say, static, constant) problem solving
has been extended to solve time-varying problems. It is worth pointing out that such
two methods both aim at forcing the error functions to be zero, which is essentially
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consistent with the objective of tracking control. However, in the previous studies,
the ZD method and the GD method are generally exploited for problem solving
individually and comparatively, and other researchers rarely consider combining
them to utilize the advantage of each method as well as the superiority of their
combination.

In this book, by effectively combining the ZD and GD methods together, a
simple and effective controller-design method is developed and presented, which
is termed Zhang-gradient (ZG) method. Accordingly, based on the ZG method,
a special kind of controllers termed ZG controllers are designed, developed, and
investigated for tracking control of various nonlinear systems (including linear
systems as a special case), i.e., chaotic systems, integrator systems, pendulum
systems, affine-form nonlinear (AFN) systems, as well as time-varying linear and
nonlinear systems. In general, under the framework of the ZG method, a ZG
controller obtained by adopting the ZD method m times and the GD method n
times is called a zmgn controller. Specifically, the zmg0 controllers are designed
by adopting the ZD method m times and without using the GD method, which can
be viewed as a special case of ZG controllers and thus often termed ZD controllers
directly for comparisons with the ZG controllers using the GD method; besides,
the zmgl controllers are designed by adopting the ZD method m times and the GD
method 1 time. It is worth pointing out that, in most cases, the ZG controllers refer
to the zmgl controllers, which can elegantly conquer the knotty division-by-zero
(DBZ) problem. In traditional investigations, the DBZ problem is rarely considered
and studied since it is a knotty problem for conventional controller design. In
the conventional controller design, the divisor of a controller is simply assumed
to be nonzero at any time instant, which often leads to contradictions between
theoretical investigations and practical applications. Note that the DBZ problem has
existed for thirteen centuries. However, past efforts have been spent on studying the
problem under a time-invariant premise, i.e., studying the division operation with
fixed operands at a certain time instant. By contrast, this book mainly focuses on
investigating the DBZ problem from the perspective of temporal evolution instead
of under a time-invariant premise. The simple and effective ZG method presented in
this book is capable of designing the ZG controllers in a division-free manner. That
is, the ZG controllers get rid of the potential possibility of encountering the DBZ
problem and thus remain valid at the DBZ points encountered during the tracking-
control process of nonlinear systems. Through the related theoretical analyses, the
ZD and ZG controllers (more specifically, the zmg0 and zmg1 controllers under the
framework of the ZG method) both possess the global and exponential convergence
performance, which theoretically guarantee the efficacy of controllers. Computer
simulations with various illustrative examples are further performed to substantiate
the feasibility and efficacy of the presented ZD and ZG controllers (as well as the
ZG method) for tracking control of various nonlinear systems. More importantly,
the superiority of ZG controllers in conquering the DBZ problem is also illustrated
by comparative simulation results. In brief, the main highlights of this book can be
listed as follows.
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(1) This book is the first book on the ZG method for controller design in connection
with nonlinear/linear, time-varying/time-invariant, and multi-class or various
systems.

(2) This book overcomes the challenges of control singularity and system collapse
posed by the DBZ problem.

(3) This book provides detailed theoretical analyses, as well as abundant and
comparative simulation results.

The idea for this book on neural dynamics and control was conceived during
the classroom teaching as well as the research discussion in the laboratory and at
international academic meetings. Most of the materials of this book are derived
from the authors’ papers published in journals and proceedings of the international
conferences. In fact, since the early 1980s, the field of neural dynamics has
undergone the phases of exponential growth, generating many new theoretical
concepts and tools (including the authors’ ones). At the same time, these theoretical
results have been successfully applied to the solution of many practical problems.
Our first priority is thus to cover each central topic in enough details to make the
material clear and coherent; in other words, each part (and even each chapter) is
written in a relatively self-contained manner.

In this book, Chap. 1 presents the introduction, concepts, and preliminaries, and
the remainder contains 16 chapters that are classified into the following 5 parts:

e Part I: Chaotic Systems Using ZG Control (Chaps. 2—4);

e Part II: Integrator Systems Using ZG Control (Chaps. 5-7);

e Part III: Pendulum Systems Using ZG Control (Chaps. 8-10);

e Part IV: AFN Systems Using ZG Control (Chaps. 11-14);

e Part V: Time-Varying Systems Using ZG Control (Chaps. 15-17).

Chapter 2—In this chapter, we investigate the tracking-control problems of
Lorenz, Chen, and Lu (also written as Lii) chaotic systems. By combining the ZD
and GD methods together, a simple and effective controller-design method, termed
ZG method, is presented for tracking control of the three chaotic systems. Both
theoretical analyses and simulative verifications substantiate that the presented ZG
controllers can achieve satisfactory tracking accuracy and successfully conquer the
DBZ problem encountered during the tracking-control process.

Chapter 3—In this chapter, the ZG method is investigated for chaos synchroniza-
tion with multiple inputs (i.e., three or two inputs). Based on the ZG method, the
traditional three-input chaos synchronization problem can be successfully solved
with desirable convergence rate and satisfactory accuracy. Besides, an important
extension of the ZG method is investigated to solve the thorny two-input chaos
synchronization problem. Simulation results illustrate that the controller groups
designed by the ZG method not only achieve satisfactory synchronization accuracy
and exponential convergence rate on the three-input chaos synchronization problem
but also successfully solve the chaos synchronization problem with only two inputs.

Chapter 4—In this chapter, the ZG method is studied for solving the tracking-
control problem of the modified Lorenz nonlinear system via additive input or mixed
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inputs (i.e., the mixture of additive and multiplicative inputs). Both theoretical
analyses and simulative verifications validate that the ZG controllers with additive
input or mixed inputs not only achieve satisfactory tracking accuracy but also
successfully conquer the DBZ problem encountered during the tracking-control
process.

Chapter 5—In this chapter, we apply the ZG method to the tracking control of
Brockett integrator. Based on the ZG method, different types of controller groups
are designed for Brockett integrator. Both theoretical analyses and simulative verifi-
cations indicate that the tracking errors are bounded and exponentially convergent.
More importantly, comparative simulation results illustrate that the ZG controller
group is superior to the ZD controller group in conquering the DBZ problem
encountered during the tracking-control process.

Chapter 6—In this chapter, the ZG controllers for explicit and implicit tracking
control of a double-integrator (DI) system are designed and presented. In addition,
we conduct the corresponding computer simulations with different values of the
design parameter A used to illustrate the efficacy of ZG controllers. However,
different settings of simulation options in MATLAB ordinary differential equation
(ODE) solvers may lead to different simulation results (e.g., failure and success).
The successful and failed simulation results are both presented to remind us to
pay more attention to MATLAB defaults and options during conducting such
simulations.

Chapter 7—In this chapter, the tracking-control problems of multiple-integrator
(MI) systems are investigated by using the ZG method. Several types of ZD and ZG
controllers are presented for tracking control of MI systems, e.g., triple-integrator
(TT) systems. As an example, the design procedures of ZD and ZG controllers for
TI systems with a linear output function (LOF) and a nonlinear output function
(NOF) are presented. Corresponding theoretical analyses are given to guarantee
the convergence performance of ZD and ZG controllers for TI systems. Computer
simulations concerning the tracking control of MI systems with different types of
output functions are further performed to substantiate the feasibility and efficacy of
ZD and ZG controllers for tracking-control problem solving. Moreover, comparative
simulation results for the tracking control of MI systems with NOFs substantiate that
the ZG controllers can effectively conquer the DBZ problem.

Chapter 8—In this chapter, we firstly design ZD controllers for the explicit
and implicit tracking control of a simple pendulum system. For achieving the
DBZ-containing implicit tracking control, ZG controllers are further designed for
conquering the DBZ problem. Computer simulations with an explicit tracking
example and two implicit tracking examples are conducted. Comparative simulation
results have substantiated the superiority of the ZG controllers for the DBZ-
containing implicit tracking control of simple pendulum system.

Chapter 9—In this chapter, the cart path tracking control of an inverted-
pendulum-on-a-cart (IPC) system is considered and investigated. Based on the
ZG method, several types of ZD and ZG controllers are developed to achieve the
tracking-control purpose. Besides, theoretical analyses are presented to guarantee
the global and exponential convergence performance of both ZD and ZG controllers.
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Computer simulations are further performed to illustrate the feasibility and efficacy
of both ZD and ZG controllers. More importantly, comparative simulation results
indicate that ZG controllers can effectively conquer the DBZ problem.

Chapter 10—In this chapter, two tracking controllers based on the ZG method
are designed for the IPC system. Importantly, the presented ZG controller not
only realizes the simultaneous control of pendulum swinging up and pendulum
angle tracking but also conquers the DBZ problem elegantly without using any
switching strategy. Besides, corresponding theoretical analyses on the convergence
performance of both ZD and ZG controllers are provided. Computer simulations
with three illustrative examples are further conducted to show the efficacy of both
ZD and ZG controllers for the pendulum tracking control of the IPC system. In
particular, comparative simulation results substantiate the superiority of the z2g1
controller for the control of pendulum tracking (including swinging up) of the IPC
system in conquering the DBZ problem.

Chapter 11—In this chapter, we incorporate the GD into IOL, which leads to the
GD-aided IOL method for conquering the DBZ problem encountered in the AFN
system, with the proposition of the loose condition on relative degree. Correspond-
ing theoretical analyses on tracking-error bound and convergence performance
of the GD-aided IOL controller are provided. Moreover, comparative simulation
results further substantiate that the GD-aided IOL controller is capable of fulfilling
the tracking-control task with the DBZ problem conquered.

Chapter 12—In this chapter, a classic nonlinear system of Van der Pol oscillator
in the affine-control form is investigated. By applying the ZG method, a ZG
controller is designed for trajectory generation of the aforementioned nonlinear
oscillator. Simulation results illustrate the feasibility and efficacy of the ZG
controller with the DBZ problem conquered. In addition, the effects of ZD and GD
design parameters on the performance of ZG controller are further studied.

Chapter 13—In this chapter, by following the ZG method, a ZD controller and
a ZG controller are presented for tracking control of AFN system, which may
encounter the DBZ problem. For comparison, the conventional IOL controller is
also presented. The ZD, ZG, and IOL controllers are compared in different relative-
degree cases, i.e., the standard relative-degree case, the pseudo-DBZ (PDBZ)
relative-degree case, and the true-DBZ (TDBZ) relative-degree case. In addition,
the theoretical analyses on ZD and ZG controllers are provided. Corresponding
computer simulations are further performed to illustrate the tracking performance
of the ZD, ZG, and IOL controllers, as well as to show the superiority of the ZG
controller in conquering the TDBZ problem for tracking control of AFN system.

Chapter 14—In this chapter, according to the impact of DBZ points on the state
variables of the controlled nonlinear system, the concepts of the PDBZ problem and
the TDBZ problem are presented. Besides, the two classes of DBZ problems are
solved under the framework of the ZG method. Specific examples are investigated
to illustrate such two concepts and the efficacy of the ZG controllers in conquering
PDBZ and TDBZ problems. The practical application to a two-wheeled mobile
robot further substantiates the efficacy of the ZG method for tracking control of
nonlinear system with physical meaning while conquering the TDBZ problem.
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Chapter 15—In this chapter, the output tracking of time-varying linear (TVL)
system is investigated. For solving such an output-tracking problem, three different
types of controllers are presented, i.e., the conventional controller, ZD controller,
and ZG controller. Simulation results with two illustrative examples show that such
three types of controllers are feasible and effective for output-tracking problem
solving. Especially, the presented ZG controller is capable of conquering the DBZ
problem of TVL system.

Chapter 16—In this chapter, the stabilization of TVL system is investigated with
PDBZ phenomenon shown. Based on the ZG method, a ZD stabilization controller
and a ZG stabilization controller are designed. Simulation results indicate that the
ZD stabilization controller is able to realize the stabilization of the TVL system in
spite of the controller itself containing DBZ points, and that the ZG stabilization
controller not only realizes the stabilization of the TVL system but also solves the
PDBZ problem contained in the ZD stabilization controller.

Chapter 17—In this chapter, the ZG method is utilized to design ZD and ZG
controllers for the output tracking of TVL and time-varying nonlinear (TVN)
systems. Particularly, the investigated TVL and TVN systems may both have
PDBZ phenomena. From the simulation results, although the presented ZD and ZG
controllers fulfill well the output tracking of TVL and TVN systems, the infinite
value of the former and the finite value of the latter at DBZ time instants indicate
that the ZG controller is more effective in dealing with the PDBZ problem.

In summary, this book presents a simple and effective ZG method for solving
the tracking-control problems of various nonlinear systems in the control field and
further applies such a method to the tracking control of practical systems, e.g.,
IPC system and two-wheeled mobile robot (showing its application prospect). This
book is written for undergraduate and postgraduate students as well as academic
and industrial researchers studying in the developing fields of neural dynamic-
s/neural networks, nonlinear control, computer mathematics, time-varying problem
solving, modeling and simulation, analog hardware, and robotics. It provides a
comprehensive view of the combined research of these fields, in addition to its
accomplishments, potentials, and perspectives. We do hope that this book will
generate curiosity and also happiness to its readers for learning more in the fields
and the research, and that it will provide new challenges to seek new theoretical
tools and practical applications.

At the end of this preface, it is worth pointing out that, in this book, a new and
inspiring direction on the control method is provided for the design of controllers,
together with the notorious DBZ problem conquered effectively, which has existed
and has been investigated for more than 1300 years in academia and has stood
in the tracking-control area of nonlinear systems for several decades (specifically,
since the work of Alberto Isidori in 1985). This completely opens the door to the
theoretical researches, simulative verifications, and practical/industrial applications
of the DBZ-conquering ZG controllers designed by the ZG method, as the knotty
DBZ problem has now been solved truly, systematically, and methodologically.
It may promise to become a major inspiration for studies and researches in
neural dynamics/neural networks, nonlinear control, computer mathematics, time-
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varying problem solving, modeling and simulation, analog hardware, and robotics.
Without doubt, this book can be extended. Any comments or suggestions are
welcome. The authors can be contacted via e-mails: zhynong @mail.sysu.edu.cn,
qiubb6 @mail.sysu.edu.cn, and lixd@mail.sysu.edu.cn. The web page of Yunong
Zhang is available at http://sdcs.sysu.edu.cn/content/2477.

Guangzhou, China Yunong Zhang
Guangzhou, China Binbin Qiu
Guangzhou, China Xiaodong Li

July 2020
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