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ABSTRACT

Voice Assistants aim to fulfill user requests by choosing the best intent from multiple options
generated by its Automated Speech Recognition and Natural Language Understanding sub-systems.
However, voice assistants do not always produce the expected results. This can happen because voice
assistants choose from ambiguous intents — user-specific or domain-specific contextual information
reduces the ambiguity of the user request. Additionally the user information-state can be leveraged to
understand how relevant/executable a specific intent is for a user request. In this work, we propose a
novel Energy-based model for the intent ranking task, where we learn an affinity metric and model
the trade-off between extracted meaning from speech utterances and relevance/executability aspects
of the intent. Furthermore we present a Multisource Denoising Autoencoder based pretraining that is
capable of learning fused representations of data from multiple sources. We empirically show our
approach outperforms existing state of the art methods by reducing the error-rate by 3.8%, which
in turn reduces ambiguity and eliminates undesired dead-ends leading to better user experience.
Finally, we evaluate the robustness of our algorithm on the intent ranking task and show our algorithm
improves the robustness by 33.3%.

1 Introduction

A variety of tasks use Voice Assistants (VA) as their main user interface. VAs must overcome complex problems and
hence they typically are formed of a number of components: one that transcribes the user speech (Automated Speech
Recognition - ASR), one that understands the transcribed utterances (Natural Language Understanding - NLU), one
that makes decisions (Decision Making - DM [36]), and one that produces the output speech (TTS). Many VAs have a
pipeline structure similar to that in Figure 1.

Our work is mainly focused on the DM sub-system and our primary contributions are: 1) proposing to decouple
language understanding from information-state and modeling an affinity metric between them; 2) the identification
of Multisource Denoising Autoencoder based pretraining and its application to learn robust fused representations; 3)
quantifying robustness; 4) the introduction of a novel ranking algorithm using Energy-based models (EBMs). In this
work, we limit our scope to non-conversational utterances, i.e., utterances without followups containing anaphoric
references and leave that for future work. We evaluate our approach on an internal dataset. Since our algorithm
is primarily focused on leveraging inherent characteristics that are unique to large-scale real-world VAs, the exact
algorithm may not be directly applicable to open-source Learning to Rank (LTR) datasets. But we hope our findings
will encourage application and exploration of EBMs applied to LTR in both real-world VAs and other LTR settings.

The remainder of the paper is organized as follows: Section 2 discusses the task description while Section 3 covers the
related work. Section 4 then describes the ranking algorithm, and Section 5 discusses the evaluation metrics, datasets,
training procedure, and results.

This work has been accepted at IWSDS 2020 Conference.
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Figure 1: Components of a Voice Assistant.

2 Task Description

The ultimate goal of a VA is to understand user intent. The exact meaning of the words is often not enough to
choose the best intent. In Figure 1, we show the use of information-state, and we classify it into three categories. All
private-sensitive information stays on the user’s device.

Personal Information: e.g. user-location, app subscriptions, browsing history, device-type etc.

User State: Information about the user’s state at the time a query is made. (e.g. user is driving, etc.)

Context: Dialog context of what the user said in previous queries in the same conversation or task (e.g. song requests).

To illustrate how semantically similar user requests can have different user intents consider the examples in Figure 2. In
Figure 2a the user meant to play some song from a specific artist. However in Figure 2b, although playing some song
from the requested artist is also reasonable, knowing that there is a song named “One" from the artist leads to better
intent selection, as shown.

Ambiguity can still remain even if a sub-system correctly decodes user input. For example consider Figure 3: it is
not possible to predict the user intended transcription unless we know there is a contact with that name due to the
homophone. Figure 3b is an example where a suboptimal intent was executed although there was a better intent as
shown in Figure 3c. We term this scenario undesired dead-end since the user’s intended task hit a dead-end.

The use of information-state is crucial to select the right response, which is also shown empirically in Section 5.4.1. We
aim to reduce ambiguity (both ASR and NLU), and undesired dead-ends to improve the selection of the right intent by
ranking alternative intents. ASR signals are comprised of speech and language features that generate speech lattices,
model scores, text, etc. NLU signals are comprised of domain classification features such as domain categories, domain
scores, sequence labels of the user request transcription, etc. An intent is a combination of ASR and NLU signals.
We refer to these signals as understanding signals decoded by ASR and NLU sub-systems. Every intent is encoded
into a vector space and this process is described in Section 4.1. Our task is to produce a ranked list of intents using
information-state in addition to understanding signals to choose the best response.
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Figure 2: Examples of user requests with same semantics but with different intents. (a) shows a user request to play a
song from an artist, (b) shows a user request to play a specific song from an artist.

Figure 3: An example of an undesired dead-end. (a) shows a case where user intended transcription is not possible to
predict unless the voice assistant has the contact information. (b) shows how lack of contact information leads to a
sub-optimal intent execution although there is a better intent shown in (c).

3 Related Work

While our work falls within the broad literature of LTR, we position it in the context of information-state based
reranking, unsupervised pretraining, zero-shot learning, and EBMs applied to the DM sub-system of a Voice Assistant.

Information-state based reranking: Reranking approaches have been used in VAs to rerank intents to improve
accuracy. Response category classification can be improved by reranking k-best transcriptions from multiple ASR
engines [29]. ASR accuracy can be improved by reranking multiple ASR candidates by using their syntactic properties
in Human-Computer Interaction [1]. Reranking domain hypotheses is shown to improve domain classification accuracy
over just using domain classifiers without reranking [23, 32].

All of the above approaches only focus on ASR candidates or domain hypotheses, which are strongly biased towards the
semantics of the user request. Although [23] exploits user preferences along with NLU interpretation, they treat both of
them as a single entity (hypothesis). In our work, we explicitly learn an affinity metric between information-state and
predicted meaning from the transcribed utterance to choose the appropriate response.

Unsupervised pretraining: DM input consists of multiple diverse sources. For example, speech lattices, textual
information, scores from ASR and NLU models, and unstructured contextual information, to name a few. Each data
type has distinct characteristics, and learning representations across data types that capture the meaning of the user
request is important. One approach is to use a deep boltzmann machine for learning a generative model to encode such
multisource features [34]. Few approaches learn initial representations from unlabeled data through pretraining [1, 32].
Encoding can also be learned by optimizing a neural network classifier weights by minimizing the combined loss of an
autoencoder and a classifier [31]. Both pretraining and classification can be jointly learned from labeled and unlabeled
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Figure 4: (a) Shows a scenario where NLU correctly predicts the intent given correct ASR transcription. (b) Shows a
scenario where NLU fails to predict the right intent due to incorrect ASR transcription (missing the word “by") caused
by external noise. (c) Shows a scenario where NLU fails to predict the right intent, but DM helps in identifying the
correct intent using domain-specific information.

data, labeled data loss is used to obtain pseudo-labels, and pretraining is done using the pseudo-loss [28]. Pretraining
for intial representations can also be realized by using a CNN2CRF architecture for slot tagging using labeled data, and
learning dependencies both within and between latent clusters of unseen words [8].

Although these previous works address few aspects of the multisource data problem, none of them address the robustness
of the learned representations. Since DM consumes the outputs of many sub-systems that may change their distributional
properties, for instance through retraining, some degree of robustness is desired to not drastically affect the response
selection.

To address both distinct data characteristics and robustness, we propose using a Denoising Autoencoder (DAE) [37] with
a hierarchical topology that uses separate encoders for each data type. The average reconstruction loss contains both a
separate term to minimize the error for each encoder, and the fused representations. This provides an unsupervised
method for learning meaningful underlying fused representations of the multisource input.

Zero-shot learning: The ability of DM to predict and select unseen intents is important. User requests can consist
of word sequences that NLU might not be able to accurately tag by relying only on language features. To illustrate
consider the examples in Figure 4. The user request in Figure 4a is tagged correctly, and the NLU sub-system predicts
the right user intent of playing a song from the correct artist. Figure 4b showcases a scenario where due to external
noise the user intended transcription of “Play ME by Taylor Swift" was mistranscribed by the ASR sub-system as “Play
me Taylor Swift", and this ASR error propagated to NLU leading to tag ME as a pronoun instead of MusicTitle. With
DM, as shown in Figure 4c, we leverage domain-specific information and decode the right transcription and intent
(playing ME song) from the affinity metric, although this input combination was never seen before by the model.

One approach is to use a convolutional deep structured semantic model (CDSSM), which performs zero-shot learning
by jointly learning the representations for user intents and associated utterances [12]. This approach is not scalable
since such queries can have numerous variations, and they follow no semantic pattern. We propose to complement NLU
features with domain-specific information to decode the right intent in addition to shared semantic signals.

EBM for DM: Traditional approaches to LTR use discriminative methods. Our approach learns an affinity metric that
captures dependencies and correlations between semantics and information-state of the user request. We accomplish
this learning by associating a scalar energy (a measure of compatibility) to each configuration of the model parameters.
This learning framework is known as energy-based learning and is used in various computer vision applications, such
as signature verification [3], face verification [14], and one-shot image recognition [26]. We apply EBM for LTR (and
DM in voice assistants) for the first time. We propose a novel energy-based learning ranking loss function.
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Figure 5: Encoder architecture of Multisource DAE that models the joint distribution over scores, text, and categorical
features. Light green layer, V ∗, represents the original input; light magenta layer, V ∗

d , depicts the affine transformations;
two layers of dark magenta, h1∗ and h2∗, represents source-specific latent representation learning; finally, light yellow
layer, h(3), represents the fused representation.

4 EnergyRank algorithm

EBMs assign unnormalized energy to all possible configurations of the variables [27, 35]. The advantage of EBMs
over traditional probabilistic models, especially generative models, is that there is no need for estimating normalized
probability distributions over the input space. This is efficient since we can avoid computing partition functions. Our
algorithm consists of two phases — pretraining and learning the ranking function, which are described in Sections 4.1
and 4.2 respectively.

4.1 Multisource Denoising Autoencoder

Since our model consumes input from multiple sub-systems, two aspects are important: robustness of features and
efficient encoding of multisource input. The concept of DAE [37] is to be robust to variations of the input. We
have three data types in the input: model scores that are produced by other sub-systems, text generated by ASR and
Language Models (LMs), categorical features generated by NLU models like sequence labels, verbs etc. Let V s

denote a multi-hot vector, which is a concatenation of 11 IR11 one-hot vectors, where each contains binned real-valued
model scores. Let V t represent the associated text input (padded or trimmed to a maximum of 20 words), which
is a concatenation of 20 word-vectors. Each word-vector vti ∈ IR50 is a multi-hot vector of ith word. Similarly let
V c represent associated sequence-labels of those 20 words, which is a concatenation of 20 sequence-label vectors.
Each ith sequence-label vector vci ∈ IR50 is a multi-hot vector. For example consider the utterance “Call Ravi”, the
corresponding sequence-labels might be [phoneCallVerb, contactName].

We start by modeling each data type by adding affine distortions followed by a separate two-layer projection of the
encoder, as shown in Figure 5. This gives separate encodings for each data type. Let dae∗ represent an encoding
function, W ∗

enc is the respective weight matrix and P (noise) a uniform noise distribution. The encodings are given by:

V s
d , V

t
d , V

c
d = affine_transform((V s, V t, V c); P (noise)). (1)

Let us denote source-specific hidden representations of real-valued, text and categorical features by hs, ht, hc derived
from encoder models with respective parameters W s

enc,W
t
enc,W

c
enc. These latent representations are given by:

h∗ = dae∗(V ∗
d ;W

∗
enc), (2)

and the fused representation is obtained by:

h = dae((hs, ht, hc);Wenc). (3)

Let idae∗ represent the decoding function, and W ∗
dec denote the respective weight matrix. The hidden-state reconstruc-

tions are given by:
hs
′
, ht
′
, hc

′
= idae(h; (W s′

dec,W
t′

dec,W
c′

dec)). (4)
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Figure 6: EBM with Siamese Architecture.

The original denoised input reconstructions are given by:

V ∗′ = idae∗(h∗
′
;W ∗

dec). (5)

We learn the parameters of the Multisource DAE jointly by minimizing the average reconstruction error captured by
categorical cross entropy (CCE) of both the hidden state and the original denoised input decodings captured by the
terms of the loss function. We denote the CCE loss as LCCE .

Lh = LCCE(h
∗, h∗

′
), (6)

LV = LCCE(V
∗, V ∗′), (7)

W ∗
enc,Wenc,W

∗
dec = argmin

W∗enc,W
∗
dec

1

m

m∑
i=1

(Lh
i + LV

i ). (8)

4.2 Model Description

The ranking function is learned by finding the parameters W that optimize the suitably designed ranking loss function
evaluated over a validation set. Directly optimizing the loss averaged over an epoch generally leads to unstable EBM
training and would be unlikely to converge [14]. Therefore, we add a scoring layer after the energy is computed and
impose loss function forms to implicitly ensure energy is large for intent with bad rank and low otherwise. Details of
the energy computation and the loss function forms are given in Sections 4.2.1 and 4.2.2 respectively.

4.2.1 Energy Function of EBM

The architecture of our Ranker is shown in Figure 6. Our ranker consists of two identical Bidirectional RNN networks,
where one network accepts the fused representation, and the other accepts the information-state. Learning the affinity
metric is realized by training these twin networks with shared weights. This type of architecture is called a Siamese
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Network [3]. The major difference between our work and previous works on siamese networks is that we present
the same data-point to the twin networks but categorized as two inputs based on if it is information-state or not. All
previous works use two distinct data-points to compute energy. In other words, we compute intra-energy and previous
works focused on inter-energy. We used GRU [13] for the RNN since it often has the same capacity as an LSTM [19],
but with fewer parameters to train.

To simplify let Xint and Xst denote an intent’s extracted meaning (V s, V t, V c) and its associated information-state
respectively. Both the inputs are transformed through Multisource DAE and Embeddings Layer respectively to have
the same dimensions IR500. Let W be the shared parameter matrix that is subject to learning, and let FW (Xint) and
FW (Xst) be the two points in the metric space that are generated by mapping Xint and Xst. The parameter matrix W
is shared even if the data sources of Xint and Xst are different since they are related to the same request and the model
must learn the affinity between them. We compute the distance between FW (Xint) and FW (Xst) using the L1 norm,
then the energy function that measures compatibility between Xint and Xst is defined as:

EW (Xint, Xst) = ‖FW (Xint)− FW (Xst)‖. (9)

4.2.2 Energy-based Ranking Loss Function

Traditional ranking loss functions construct the loss using some form of entropy in a pointwise, pairwise or listwise
paradigm. Parameter updates are performed using either gradients [4] or Lambdas λ [6, 7]. We use gradient based
methods to update parameters. Let x1 and x2 be two intents from same user request. The prediction score of the ranker
is obtained by p = σ(EW ), for convenience we denote p associated with x1 as p(x1) and f(.) as the learned model
function. We construct the loss as a sequence of weighted energy scores. Pairwise loss is constructed as:

L(f(.), x) =

n−1∑
i=1

n∑
j=i+1

φ(p(xi), p(xj)), (10)

where φ is a hyperparameter that can be one of logistic function (φ(z) = log(1 + exp−z)), hinge function (φ(z) =
(1− z)+), exponential function (φ(z) = exp−z), with z = p(xi)− p(xj).
Listwise losses are constructed as:

L(p(.), x, y) =

n−1∑
i=1

(−p(xy(s)) + ln(

n∑
j=i

exp(p(xy(i)))), (11)

where y is a randomly selected permutation from the list of all possible intents that retains relevance to the user-request.

5 Experiments and Results

5.1 Evaluation Metrics

We evaluated EnergyRank using two metrics.

• Error Rate : The fraction of user requests where the intent selection was incorrect.
• Relative Entropy : We employ Relative Entropy, given in Equation 12, to quantify the distance between input

score distributions p and q. Relative entropy serves as a measure for the robustness of the model to upstream
sub-system changes. We used whitening to eliminate unbounded values, and 10E-9 as a dampening factor to
give a bounded metric. A value of 0.0 indicates identical distributions, while 1.0 are maximally dissimilar.

rel_entr(p, q) =


p log (p/q) p > 0, q > 0

0 p = 0, q ≥ 0

∞ otherwise.

(12)

5.2 Datasets

5.2.1 Labeled Dataset

The labeled dataset is used to measure the error rate. This dataset contains 24,000 user requests comprised of seven
domains: music, movies, app-launch, phone-call, and three knowledge-related domains. The ranking labels are produced
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Table 1: Error-rates on labeled data both with and without information-state.
Method Error Rate∗ p-value∗ Error Rate∗∗ p-value∗∗

LogisticRegression 41.1% ± 0.5% 0.7E-04 32.1% ± 1.2% 1.2E-05
LambdaMARTOH 36.5% ± 0.3% 1.4E-05 22.3% ± 0.1% 1.1E-05
EnergyRankEF

list — — 20.9% ± 1.3% 0.9E-05
LambdaMARTFH 34.4% ± 0.6% 1.3E-05 20.2% ± 0.1% 1.1E-05
HypRank 32.9% ± 0.8% 1.6E-04 19.6% ± 0.9% 2.3E-04
EnergyRankHF

pair — — 19.5% ± 0.6% 1.6E-03
LambdaMARTED 29.7% ± 0.3% 0.9E-05 18.2% ± 0.1% 1.2E-05
EnergyRankLF

list — — 17.9% ± 1.1% 2.1E-03
EnergyRankLF

pair — — 17.5% ± 0.8% 1.3E-05
∗ without information-state
∗∗ with information-state

by human annotators by taking non-private information-state into account. The dataset is divided into 12,000 user
requests for training, 4,000 for validation and 8,000 for the test-set. The average number of predicted intents per user
request is 9 with a maximum of 43. The extracted meaning of the request is represented by features from ASR and
NLU sub-systems, information-state is represented by 114 categorical attributes. The error rate with just selecting the
top hypothesis is 41%.

5.2.2 Unlabeled Dataset

The unlabeled dataset consists of two unlabeled sub-datasets sampled from two different input distributions. Each
sub-dataset consists of 80,000 user requests. The data here are not annotated since we are interested in a metric that
only needs the scores of the model’s best intent.

5.3 Training Procedure

We trained EBM using both pairwise and listwise loss functions given in Eq-10 and Eq-11 respectively. The objective is
combined with backpropagation, where the gradient is additive across the twin networks due to the shared parameters.
We used a minibatch size of 32 and Adam [24] optimizer with the default parameters. For regularization, we observed
that Batch Normalization [20] provided better results than Dropout [33].

We used tanh for GRU and ReLU for all units as activation functions. We initialized all network weights from a normal
distribution with variance 2.0/n [17], where n is the number of units in previous layer. Although we use an adaptive
optimizer, employing an exponential decay learning schedule helped improve performance. We trained EBM for a
maximum of 150 epochs.

5.4 Results

We trained three baseline algorithms: Logistic Regression, LambdaMART [6], and HypRank [23], where Logistic
Regression and LambdaMART were trained with the pairwise loss function, HypRank with the listwise loss function,
and EnergyRank with both loss functions. For LambdaMART we used three different encoding schemes: one-hot
vectors (OH), feature hashing (FH), and eigen-decomposition (ED). For HypRank we used LSTMC , i.e, concatenating
the hypothesis vectors and the BiLSTM output vectors as input to the feedforward layer since this was the best
performing architecture.

5.4.1 Error Rate

We trained each model ten times with different seed and weight initializations, and we report the mean error rate. We
use a two-sided T-test to compute p-value to establish statistical significance. Table-1 shows the results on the internal
labeled dataset, with ± showing 95% confidence intervals. We empirically show that information-state improves error-
rates. EnergyRank results are not reported in experiments without information-state since it needs both understanding
features and information-state to compute the affinity metric. The superscript of LambdaMART denotes the encoding
scheme used. EnergyRank superscript denotes φ used: EF for Exponential Function, HF for Hinge Function, LF for
Logistic Function, and subscript for pairwise/listwise loss paradigm.
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Table 2: Relative-Entropies on unlabeled data.
Method Relative Entropy
HypRank 0.468
EnergyRankLF−NA

pair 0.319
LambdaMARTED 0.168
EnergyRankLF

pair 0.112

Figure 7: A visualization of the model’s top intent score distributions as probability density function (PDF) correspond-
ing to two different input distributions P(X) and Q(X).

5.4.2 Relative Entropy

We run the best performing methods: LambdaMART, HypRank, and EnergyRank models on two unlabeled datatsets,
each of the size 80,000 sampled from different feature distributions. We use the score of the model’s top predicted intent
and group them into 21 buckets ranging from 0.0 to 1.0 with a step-size of 0.05. The raw counts obtained are normalized
and interpolated to obtain a probability density function (PDF) of the scores. We measure the relative entropy to quantify
the robustness of these algorithms to changes in feature distributions. The best performing EnergyRank model degrades
in robustness when no affine-transform is applied (EnergyRankLF−NA

pair ) with a minimal drop in accuracy.

Figures 7a, 7b, and 7c show the superimposition of the model’s top intent output score PDFs of HypRank, LambdaMART,
and EnergyRank respectively. The two output score PDFs in each superimposition correspond to P(X) and Q(X) input
distributions. Table 2 shows the relative-entropy which quantifies the difference between the two PDFs. EnergyRank
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with pairwise loss improves relative-entropy over LambdaMART with ED (best performing method among SOTAs, see
Table 1) by 33.3% and over HypRank by 76.1%.

6 Conclusion

We have presented a novel ranking algorithm based on EBM for learning complex affinity metrics between extracted
meaning from user requests and user information-state to choose the best response in a voice assistant. We described
a Multisource DAE pretraining approach to obtain robust fused representations of data from different sources. We
illustrated how our model is also capable of performing zero-shot decision making for predicting and selecting
intents. We further evaluated our model against other SOTA methods for robustness and show our approach improves
relative-entropy.
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