Skip to main content

Efficient and Evolvable Key Reconciliation Mechanism in Multi-party Networks Based on Automatic Learning Structure

  • Conference paper
  • First Online:
Book cover Security and Privacy in Digital Economy (SPDE 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1268))

Included in the following conference series:

  • 1638 Accesses

Abstract

Key reconciliation protocols are critical components to deploy secure cryptographic primitives in practical applications. In this paper, we demonstrate on these new requirements and try to explore a new design routine in solving the key reconciliation problem in large scale p2p networks with automatic intelligent end user under the notion of evolvable cryptography. We design a new evolvable key reconciliation mechanism (KRM) based on two tricks for the AI user: the observation of shared beacons to evolve based on a deep auto-encoder, and the exchange of observed features as a hint to reconcile a shared key based on a deep paired decoder. For any passive adversary, the KRM is forward provable secure under the linear decoding hardness assumption. Compared with existing schemes, the performance evaluation showed our KRM is practical and quite efficient in communication and time costs, especially in multi-party scenarios.

Supported by the National Natural Science Foundation of China (No. 61572521, U1636114), National Key Project of Research and Development Plan (2017YFB0802000), Innovative Research Team Project of Engineering University of APF (KYTD201805), Fundamental Research Project of Engineering University of APF (WJY201910).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Andersen, D.G.: Learning to protect communications with adversarial neural cryptography. arXiv preprint arXiv:1610.06918 (2016)

  2. Alagic, G., et al.: Status report on the first round of the NIST post-quantum cryptography standardization process. US Department of Commerce, National Institute of Standards and Technology (2019)

    Google Scholar 

  3. Alkim, E., et al.: Newhope-algorithm specifications and supporting documentation. Second Round NIST PQC Project Submission Document (2019)

    Google Scholar 

  4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a new hope. In: 25th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 2016), pp. 327–343 (2016)

    Google Scholar 

  5. Bos, J., Costello, C., Ducas, L., et al.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1006–1018 (2016)

    Google Scholar 

  6. Bos, J., et al.: CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–367. IEEE (2018)

    Google Scholar 

  7. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Symposium on Security and Privacy, pp. 553–570. IEEE (2015)

    Google Scholar 

  8. Ding, J.: New cryptographic constructions using generalized learning with errors problem. IACR Cryptology ePrint Archive, 2012:387 (2012)

    Google Scholar 

  9. Ding, J., Takagi, T., Gao, X., Wang, Y.: Ding key exchange. Technical report, National Institute of Standards and Technology (2017)

    Google Scholar 

  10. Dudzik, M., Drapik, S., Prusak, J.: Approximation of overloads for a selected tram traction substation using artificial neural networks. Technical Transactions (2016)

    Google Scholar 

  11. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

    Chapter  Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  13. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsulation mechanism in the quantum random oracle model, revisited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_4

    Chapter  Google Scholar 

  14. Klimov, A., Mityagin, A., Shamir, A.: Analysis of neural cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 288–298. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_18

    Chapter  Google Scholar 

  15. Kusner, M.J., Hernández-Lobato, J.M.: GANS for sequences of discrete elements with the Gumbel-Softmax distribution. arXiv preprint arXiv:1611.04051 (2016)

  16. Zhou, L., Chen, J., Zhang, Y., Su, C., James, M.A.: Security analysis and new models on the intelligent symmetric key encryption. Comput. Secur. 25, 14–24 (2019)

    Article  Google Scholar 

  17. Maurer, U.M., Wolf, S.: The Diffie-Hellman protocol. Des. Codes Crypt. 19(2–3), 147–171 (2000)

    Article  MathSciNet  Google Scholar 

  18. Mislovaty, R., Klein, E., Kanter, I., Kinzel, W.: Security of neural cryptography. In: Proceedings of the 2004 11th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2004, pp. 219–221. IEEE (2004)

    Google Scholar 

  19. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_12

    Chapter  MATH  Google Scholar 

  20. Rivest, R.L.: Cryptography and machine learning. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 427–439. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_36

    Chapter  Google Scholar 

  21. Ruttor, A.: Neural synchronization and cryptography. arXiv preprint arXiv:0711.2411 (2007)

  22. Smith III, T.J., Rai, V.R., Collins, B.M.: Creating and utilizing black keys for the transport layer security (TLS) handshake protocol and method therefor. US Patent App. 15/738,567, 5 July 2018

    Google Scholar 

  23. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuaishuai Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, S., Han, Y., Yang, X., Wu, X. (2020). Efficient and Evolvable Key Reconciliation Mechanism in Multi-party Networks Based on Automatic Learning Structure. In: Yu, S., Mueller, P., Qian, J. (eds) Security and Privacy in Digital Economy. SPDE 2020. Communications in Computer and Information Science, vol 1268. Springer, Singapore. https://doi.org/10.1007/978-981-15-9129-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9129-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9128-0

  • Online ISBN: 978-981-15-9129-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics