Skip to main content

Identifying Illicit Addresses in Bitcoin Network

  • Conference paper
  • First Online:
Blockchain and Trustworthy Systems (BlockSys 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1267))

Included in the following conference series:

Abstract

Bitcoin has attracted a lot of attentions from both researchers and investors since it was first proposed in 2008. One of the key characteristics of Bitcoin is anonymity, which makes the Bitcoin market unregulated and a large number of criminal and illicit activities are associated with bitcoin transactions. Therefore, it’s necessary to identify the illicit addresses in the Bitcoin network for safeguarding financial systems and protecting user’s assets. To identify the illicit addresses in the Bitcoin network, first, we collect a large dataset of illicit addresses. The illicit addresses come mainly from some specific websites, public forums, and research papers. Second, we make a careful design of the features of illicit addresses. The features include basic features that refer to the related papers and the novel proposed features (topological features and temporal features). Third, we apply various machine learning algorithms (RF, SVM, XGB, ANN) to evaluate our features, which indicates that the proposed features are discriminating and robust. Besides, the paper discusses the class imbalance problem and achieves a better enhancement when using the cost-sensitive approach. Moreover, the paper proposes a model that incorporates LSTM into auto-encoder to generate temporal features. Results show that the generated features are helpful for the illicit addresses identification. Finally, the dataset and code are released in Github.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamoto, S., et al.: Bitcoin: A peer-to-peer electronic cash system (2008)

    Google Scholar 

  2. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain technology: Architecture, consensus, and future trends. In: 2017 IEEE International Congress on Big Data (BigData Congress), pp. 557–564. IEEE (2017)

    Google Scholar 

  3. Zheng, Z., Xie, S., Dai, H.-N., Chen, X., Wang, H.: Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352–375 (2018)

    Article  Google Scholar 

  4. Chuen, D.L.K.: Handbook of Digital Currency: Bitcoin, Innovation, Financial Instruments, and Big Data. Academic Press, Cambridge (2015)

    Google Scholar 

  5. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018)

    Article  Google Scholar 

  6. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Altshuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and Privacy in Social Networks, pp. 197–223. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4139-7_10

    Chapter  Google Scholar 

  7. Hurlburt, G.F., Bojanova, I.: Bitcoin: Benefit or curse? It Professional, 16(3), 10–15 (2014)

    Google Scholar 

  8. Foley, S., Karlsen, J.R., Putninš, T.J.: Sex, drugs, and bitcoin: how much illegal activity is financed through cryptocurrencies? Rev. Financ. Stud. 32(5), 1798–1853 (2019)

    Article  Google Scholar 

  9. Janze, C.: Are cryptocurrencies criminals best friends? Examining the co-evolution of bitcoin and darknet markets (2017)

    Google Scholar 

  10. Pham, T., Lee, S.: Anomaly detection in bitcoin network using unsupervised learning methods. arXiv preprint arXiv:1611.03941 (2016)

  11. Monamo, P., Marivate, V., Twala, B.: Unsupervised learning for robust bitcoin fraud detection. In: 2016 Information Security for South Africa (ISSA), pp. 129–134. IEEE (2016)

    Google Scholar 

  12. Lin, Y.-J., Wu, P.-W., Hsu, C.-H., Tu, I-P., Liao, S.: An evaluation of bitcoin address classification based on transaction history summarization. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 302–310. IEEE (2019)

    Google Scholar 

  13. Weber, M., et al.: Anti-money laundering in bitcoin: experimenting with graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019)

  14. Bartoletti, M., Pes, B., Serusi, S.: Data mining for detecting bitcoin Ponzi schemes. In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 75–84. IEEE (2018)

    Google Scholar 

  15. Toyoda, K., Takis Mathiopoulos, P., Ohtsuki, T.: A novel methodology for hyip operators’ bitcoin addresses identification. IEEE Access 7, 74835–74848 (2019)

    Article  Google Scholar 

  16. Liao, K., Zhao, Z., Doupé, A., Ahn, G.-J.: Behind closed doors: measurement and analysis of cryptolocker ransoms in bitcoin. In: 2016 APWG Symposium on Electronic Crime Research (eCrime), pp. 1–13. IEEE (2016)

    Google Scholar 

  17. Paquet-Clouston, M., Haslhofer, B., Dupont, B.: Ransomware payments in the bitcoin ecosystem. J. Cybersecur. 5(1), tyz003 (2019)

    Google Scholar 

  18. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_4

    Chapter  Google Scholar 

  19. Toyoda, K., Ohtsuki, T., Takis Mathiopoulos, P.: Multi-class bitcoin-enabled service identification based on transaction history summarization. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1153–1160. IEEE (2018)

    Google Scholar 

  20. Jourdan, M., Blandin, S., Wynter, L., Deshpande, P.: Characterizing entities in the bitcoin blockchain. In: 2018 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 55–62. IEEE (2018)

    Google Scholar 

  21. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  22. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)

    Article  Google Scholar 

  23. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  24. Jain, A.K., Mao, J., Moidin Mohiuddin, K.: Artificial neural networks: a tutorial. Computer 29(3), 31–44 (1996)

    Article  Google Scholar 

  25. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Gulli, A., Pal, S.: Deep Learning with Keras. Packt Publishing Ltd. (2017)

    Google Scholar 

  27. Longadge, R., Dongre, S.: Class imbalance problem in data mining review. arXiv preprint arXiv:1305.1707 (2013)

  28. Nguyen, G.H., Bouzerdoum, A., Phung, S.L.: Learning pattern classification tasks with imbalanced data sets. In Pattern recognition, IntechOpen (2009)

    Google Scholar 

  29. Sun, Y., et al.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn. 40(12), 3358–3378 (2007)

    Article  Google Scholar 

  30. Bahnsen, A.C.: Ensembles of example-dependent cost-sensitive decision trees (2015)

    Google Scholar 

  31. Kramer, M.A.: Nonlinear principal component analysis using auto associative neural networks. AIChE J. 37(2), 233–243 (1991)

    Article  Google Scholar 

  32. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by the National Key Research and Development Program (2016YFB1000101), the National Natural Science Foundation of China (U1811462, 61722214) and the Key-Area Research and Development Program of Guangdong Province (2018B010109001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zibin Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Cai, Y., Tian, H., Xue, G., Zheng, Z. (2020). Identifying Illicit Addresses in Bitcoin Network. In: Zheng, Z., Dai, HN., Fu, X., Chen, B. (eds) Blockchain and Trustworthy Systems. BlockSys 2020. Communications in Computer and Information Science, vol 1267. Springer, Singapore. https://doi.org/10.1007/978-981-15-9213-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9213-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9212-6

  • Online ISBN: 978-981-15-9213-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics