Skip to main content

Data Auditing for the Internet of Things Environments Leveraging Smart Contract

  • Conference paper
  • First Online:
Frontiers in Cyber Security (FCS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1286))

Included in the following conference series:

Abstract

Cloud storage has been proposed to be integrated with the Internet of Things (IoT) to provide more intelligent and powerful services through sharing and analyzing the IoT data. However, how to assure the integrity of IoT data outsourced in the cloud is still an open challenge. A number of auditing schemes have been proposed in recent years, but most of them introduce a credible auditor to perform auditing work instead of the user. However, the absolutely credible auditor is an ideal hypothesis. Thus, we propose a new public auditing scheme, which introduces the smart contract to replace the auditor to perform the auditing task. Since the essence of smart contracts is a piece of public code posted on the blockchain, our scheme can solve the credit problem of the auditor compared with the traditional public auditing model. The proposed scheme streamlines the auditing processes to reduce the computational overheads of the user and cloud. The security of the proposed scheme is rigorously proved. In addition, the results of the performance evaluation show that our scheme can effectively realize the security auditing, and outperforms the existing schemes in computational overheads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  2. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Google Scholar 

  3. Kelly, S.D.T., Suryadevara, N.K., Mukhopadhyay, S.C.: Towards the implementation of IoT for environmental condition monitoring in homes. IEEE Sens. J. 13(10), 3846–3853 (2013)

    Article  Google Scholar 

  4. Reyna, A., Martín, C., Chen, J., Soler, E., Diaz, M.: On blockchain and its integration with IoT. Challenges and opportunities. Futur. Gener. Comput. Syst. 88, 173–190 (2018)

    Google Scholar 

  5. Mohanty, S.P., Choppali, U., Kougianos, E.: Everything you wanted to know about smart cities: the Internet of Things is the backbone. IEEE Consum. Electron. Mag. 5(3), 60–70 (2016)

    Article  Google Scholar 

  6. Capkun, S., Buttyán, L., Hubaux, J.P.: Self-organized public-key management for mobile ad hoc networks. IEEE Trans. Mob. Comput. 2, 52–64 (2003)

    Article  Google Scholar 

  7. Chuang, M.C., Lee, J.F.: TEAM: trust-extended authentication mechanism for vehicular ad hoc networks. IEEE Syst. J. 8(3), 749–758 (2013)

    Article  Google Scholar 

  8. Yang, X., Lin, J., Yu, W., Moulema, P.M., Zhao, W.: A novel enroute filtering scheme against false data injection attacks in cyber-physical networked systems. IEEE Trans. Comput. 64(1), 4–18 (2013)

    Article  Google Scholar 

  9. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on Internet of Things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4(5), 1125–1142 (2017)

    Article  Google Scholar 

  10. Juels, A., Kaliski Jr., B.S.: PORs: proofs of retrievability for large files. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 584–597. ACM (2007)

    Google Scholar 

  11. Xue, J., Xu, C., Zhao, J., Ma, J.: Identity-based public auditing for cloud storage systems against malicious auditors via blockchain. Sci. China Inf. Sci. 62(3), 1–16 (2019). https://doi.org/10.1007/s11432-018-9462-0

    Article  Google Scholar 

  12. Armknecht, F., Bohli, J.M., Karame, G.O., Liu, Z., Reuter, C.A.: Outsourced proofs of retrievability. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 831–843. ACM (2014)

    Google Scholar 

  13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.org/bitcoin.pdf

  14. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

    Google Scholar 

  15. Liu, C., Ranjan, R., Zhang, X., Yang, C., Georgakopoulos, D., Chen, J.: Public auditing for big data storage in cloud computing–a survey. In: 2013 IEEE 16th International Conference on Computational Science and Engineering, pp. 1128–1135. IEEE (2013)

    Google Scholar 

  16. Ateniese, G., et al.: Provable data possession at untrusted stores. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 598–609. ACM (2007)

    Google Scholar 

  17. Tapscott, D., Tapscott, A.: Blockchain revolution: how the technology behind bitcoin is changing money, business, and the world. Portfolio (2016)

    Google Scholar 

  18. Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., Wan, J.: Smart contract-based access control for the Internet of Things. IEEE Internet Things J. 6(2), 1594–1605 (2018)

    Article  Google Scholar 

  19. Srinivasan, M., Sarukesi, K., Rodrigues, P.: State-of-the-art cloud computing security taxonomies: a classification of security challenges in the present cloud computing environment. In: Proceedings of the International Conference on Advances in Computing, Communications and Informatics, pp. 470–476. ACM (2012)

    Google Scholar 

  20. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_7

    Chapter  Google Scholar 

  21. Tian, H., Chen, Y., Chang, C.C., Jiang, H., Huang, Y.: Dynamic-hash-table based public auditing for secure cloud storage. IEEE Trans. Serv. Comput. 10(5), 701–714 (2015)

    Article  Google Scholar 

  22. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient provable data possession. In: Proceedings of the 4th International Conference on Security and Privacy in Communication Networks, p. 9. ACM (2008)

    Google Scholar 

  23. Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession. ACM Trans. Inf. Syst. Secur. 17(4), 15 (2015)

    Article  Google Scholar 

  24. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and data dynamics for storage security in cloud computing. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1_22

    Chapter  Google Scholar 

  25. Zhu, Y., Ahn, G.J., Hu, H., Yau, S.S.: Dynamic audit services for outsourced storages in clouds. IEEE Trans. Serv. Comput. 6(2), 227–238 (2011)

    Google Scholar 

  26. Shen, J., Shen, J., Chen, X., Huang, X., Suailo, W.: An efficient public auditing protocol with novel dynamic structure for cloud data. IEEE Trans. Inf. Forensic Secur. 12(10), 2402–2415 (2017)

    Article  Google Scholar 

  27. Wang, C., Chow, S.S.M., Wangm, Q.: Privacy-preserving public auditing for secure cloud storage. IEEE Trans. Comput. 62(2), 362–375 (2011)

    Article  MathSciNet  Google Scholar 

  28. Han, J., Li, Y., Chen, W.: A Lightweight And privacy-preserving public cloud auditing scheme without bilinear pairings in smart cities. Comput. Stand. Interfaces 62, 84–97 (2019)

    Article  Google Scholar 

  29. Zhao, H., Yao, X., Zheng, X.: User stateless privacy-preserving TPA auditing scheme for cloud storage. J. Netw. Comput. Appl. 129, 62–70 (2019)

    Article  Google Scholar 

  30. Zang, L., Yu, Y., Xue, L., Li, Y., Ding, Y., Tao, X.: Improved dynamic remote data auditing protocol for smart city security. Pers. Ubiquit. Comput. 21(5), 911–921 (2017). https://doi.org/10.1007/s00779-017-1052-y

    Article  Google Scholar 

  31. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public auditability and data dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib. Syst. 22(5), 847–859 (2011)

    Article  Google Scholar 

  32. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptol. 17(4), 297–319 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of China under Grant No. U1405254, Natural Science Foundation of Fujian Province of China under Grant No. 2018J01093, Open Project Program of Wuhan National Laboratory for Optoelectronics under Grant No. 2018WNLOKF009, The Scientific Research Funds of Huaqiao University (No. 605-50Y19028), and Subsidized Project for Postgraduates’ Innovative Fund in Scientific Research of Huaqiao University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, F., Tian, H., Quan, H., Lu, J. (2020). Data Auditing for the Internet of Things Environments Leveraging Smart Contract. In: Xu, G., Liang, K., Su, C. (eds) Frontiers in Cyber Security. FCS 2020. Communications in Computer and Information Science, vol 1286. Springer, Singapore. https://doi.org/10.1007/978-981-15-9739-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9739-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9738-1

  • Online ISBN: 978-981-15-9739-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics