Skip to main content

Heterogeneous Deniable Authenticated Encryption Protocol

  • Conference paper
  • First Online:
  • 1130 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1286))

Abstract

Deniable authenticated encryption can achieve confidentiality and deniable authentication in a logical single step. Such a cryptographic primitive simplifies the design of cryptographic scheme and reduces the cost of computation and communication. In this paper, we propose a heterogeneous deniable authenticated encryption scheme called HDAE. The proposed scheme permits a sender in a public key infrastructure environment to transmit a message to a receiver in an identity-based environment. Our design utilizes tag-key encapsulation mechanism (tag-KEM) and data encapsulation mechanism (DEM) hybrid encryption methods, which is especially applicable in some privacy protection occasions. In addition, we give how to design an HDAE scheme utilizing a heterogeneous deniable authenticated tag-KEM (HDATK) and a DEM. We also construct an HDATK scheme and provide security proof in the random oracle model. Comprehensive analysis shows that our scheme is efficient and secure.

Supported by the Industry University Research of Jiansu Province (grant no. BY2019161), the Natural Science Research in Colleges and Universities of Jiansu Province (grant no. 19KJB510020).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aumann, Y., Rabin, M.O.: Authentication, enhanced security and error correcting codes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 299–303. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055736

    Chapter  Google Scholar 

  2. Wu, W., Li, F.: An efficient identity-based deniable authenticated encryption scheme. KSII Trans. Internet Inf. Syst. 9(5), 1904–1919 (2015)

    Google Scholar 

  3. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)

    Article  MathSciNet  Google Scholar 

  4. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: a new framework for hybrid encryption. J. Cryptol. 21(1), 97–130 (2007). https://doi.org/10.1007/s00145-007-9010-x

    Article  MathSciNet  MATH  Google Scholar 

  5. Choi, K.Y., Cho, J., Hwang, J.Y., Kwon, T.: Constructing efficient PAKE protocols from identity-based KEM/DEM. In: Kim, H., Choi, D. (eds.) WISA 2015. LNCS, vol. 9503, pp. 411–422. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31875-2_34

    Chapter  Google Scholar 

  6. Emura, K., et al.: A KEM/DEM-based construction for secure and anonymous communication. In: Ahamed, S.I. (ed.) proceedings of IEEE 39th Annual Computer Software and Applications Conference, COMPSAC Workshops 2015, Taichung, Taiwan. IEEE, pp. 1–5 (2015)

    Google Scholar 

  7. Xu, J., Wen, Q., Li, W., et al.: Circuit ciphertext-policy attribute-based hybrid encryption with verifiable delegation in cloud computing. IEEE Trans. Parallel Distrib. Syst. 27(1), 119–129 (2015)

    Article  Google Scholar 

  8. Bansal, T.K., Chang, D., Sanadhya, S.K.: Sponge based CCA2 secure asymmetric encryption for arbitrary length message. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 93–106. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19962-7_6

    Chapter  Google Scholar 

  9. Ishida, Y., Shikata, J., Watanabe, Y.: CCA-secure revocable identity-based encryption schemes with decryption key exposure resistance. Int. J. of App. Cryptol. 3(3), 288–311 (2017)

    Article  MathSciNet  Google Scholar 

  10. Wu, X., Han, Y., Zhang, M., Zhu, S.: Parallel long messages encryption scheme based on certificateless cryptosystem for big data. In: Chen, X., Lin, D., Yung, M. (eds.) Inscrypt 2017. LNCS, vol. 10726, pp. 211–222. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75160-3_14

    Chapter  Google Scholar 

  11. Giacon, F., Kiltz, E., Poettering, B.: Hybrid encryption in a multi-user setting, revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 159–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_6

    Chapter  Google Scholar 

  12. Ge, A., Wei, P.: Identity-based broadcast encryption with efficient revocation. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 405–435. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_14

    Chapter  Google Scholar 

  13. Sakai, Y., Hanaoka, G.: A remark on an identity-based encryption scheme with non-interactive opening. In: proceedings of 2018 International Symposium on Infor. Theory and Its Apps (ISITA), pp. 703–706. Springer, Singapore (2018)

    Google Scholar 

  14. Baek, J., Susilo, W., Salah, K., Ha, J.S., Damiani, E., You, I.: Stateful public-key encryption: a security solution for resource-constrained environment. In: Li, K.-C., Chen, X., Susilo, W. (eds.) Advances in Cyber Security: Principles, Techniques, and Applications, pp. 1–22. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1483-4_1

    Chapter  Google Scholar 

  15. Li, F., Zhong, D., Takagi, T.: Efficient deniably authenticated encryption and its application to e-mail. IEEE Trans. Inf. Forensics Secur. 11(11), 2477–2486 (2016)

    Article  Google Scholar 

  16. Jin, C., et al.: Deniable authenticated encryption for e-mail applications. Int. J. Comput. Appl. 42(5), 429–438 (2020)

    Google Scholar 

  17. Rasmussen, K., Gasti, P.: Weak and strong deniable authenticated encryption: on their relationship and applications. In: Kieran, M. (ed.) proceedings of 16th Annual Conference on Privacy, Security and Trust (PST), pp. 1–10. Springer, Belfast (2018)

    Google Scholar 

  18. Huang, W., Liao, Y., Zhou, S., et al.: An efficient deniable authenticated encryption scheme for privacy protection. IEEE Access 7, 43453–43461 (2019)

    Article  Google Scholar 

  19. Li, F., Zheng, Z., Jin, C.: Identity-based deniable authenticated encryption and its application to e-mail system. Telecommun. Syst. 62(4), 625–639 (2016)

    Article  Google Scholar 

  20. Jin, C., Zhao, J.: Efficient and short identity-based deniable authenticated encryption. In: Sun, X., Chao, H.-C., You, X., Bertino, E. (eds.) ICCCS 2017. LNCS, vol. 10603, pp. 244–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68542-7_20

    Chapter  Google Scholar 

  21. Ahene, E., Jin, C., Li, F.: Certificateless deniably authenticated encryption and its application to e-voting system. Telecommun. Syst. 70(3), 417–434 (2019)

    Article  Google Scholar 

  22. Chen, G., Zhao, J., Jin, Y., et al.: Certificateless deniable authenticated encryption for location-based privacy protection. IEEE Access 7, 101704–101717 (2019)

    Article  Google Scholar 

  23. Li, F., Hong, J., Omala, A.A.: Practical deniable authentication for pervasive computing environment. Wireless Netw. 24(1), 139–149 (2018)

    Article  Google Scholar 

  24. Jin, C., Chen, G., Yu, C., et al.: Heterogeneous deniable authentication and its application to e-voting systems. J. Inf. Secur. Appl. 47, 104–111 (2019)

    Google Scholar 

  25. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_6

    Chapter  Google Scholar 

  26. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)

    Article  MathSciNet  Google Scholar 

  27. PBC Library. http://crypto.stanford.edu/pbc/

  28. Daemen, J., Rijmen, V.: The design of Rijndael: AES-The Advanced Encryption Standard. Springer, Heidelberg (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, C., Kan, G., Chen, G., Yu, C., Xu, C. (2020). Heterogeneous Deniable Authenticated Encryption Protocol. In: Xu, G., Liang, K., Su, C. (eds) Frontiers in Cyber Security. FCS 2020. Communications in Computer and Information Science, vol 1286. Springer, Singapore. https://doi.org/10.1007/978-981-15-9739-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9739-8_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9738-1

  • Online ISBN: 978-981-15-9739-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics