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Preface

In this monograph, different types of distance functions in an n-D integral space are
discussed to consider their usefulness in approximating Euclidean metric. It dis-
cusses the properties of these distance functions and presents various approaches to
error analysis in approximating Euclidean metrics. The main emphasis of this book
is to present the mathematical treatises for performing error analysis of a digital
metric with reference to the Euclidean metric in an integral coordinate space of
arbitrary dimension. I hope that the monograph will be useful to researchers and
postgraduate students in areas of digital geometry, pattern recognition, and image
processing. The theory and results on the properties of different distance functions
presented may have applications in various pattern recognition techniques.
Analytical approaches discussed in the book would be useful in solving related
problems in digital and distance geometry. As a prerequisite, the author expects that
the readers have gone through first-level courses on vector algebra, coordinate
geometry, and functional analysis.

There are six chapters in this book. In Chap. 1, the mathematical background of
metrics, norms, distance functions, and spaces is presented with a brief discussion
on the motivation behind the efforts in approximating Euclidean metrics by digital
distances. Chapter 2 discusses digital distances, their classes, and hierarchies. In
recent works, it has been shown that generalization of a family of distance functions
is possible, and many of the results derived previously can be shown as special
cases of the properties of the general class of distance functions. Chapter 3 presents
analytical approaches for the analysis of errors of approximating Euclidean metrics
by digital metrics. Chapter 4 considers the same with geometric approaches. In this
regard, the properties of hyperspheres are also discussed. In Chap. 5 linear com-
binations of digital metrics for approximating Euclidean metrics are considered.
Finally, in the concluding chapter, a few good digital distances in different
dimensions of integral coordinate spaces are summarized. The chapter also con-
cludes by highlighting a few open problems in this regard.

About four years back, I ventured into writing a monograph on this topic. But
due to personal reasons, I could not proceed and a sort of inertia gripped me. I am
thankful to the publisher, who showed interest in reviving the project and motivated
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me to complete it. I take this opportunity to express my gratitude to my supervisor
Prof. B. N. Chatterji, who had provided immense support in my early research days,
and encouraged me on exploring my independent research thoughts, even though
they appeared simple and naive. My friend Prof. P. P. Das, who has contributed
significantly to the development of the theory of digital distances, introduced me to
this area of research. I always wondered how he could obtain all those amazing
equations and expressions of digital metrics and their properties. It was always a
pleasure to work with him and learn from him. My son Rudrabha is always curious
about what his father is doing on the computer. He himself has become quite busy
with his own research work. Even then, whenever needed, he provided all sorts of
assistance in resolving technical glitches in composing this manuscript during this
period. My wife Jhuma has to bear with my long hours of engagement before the
computer terminals. As a doctor, she has all the worries and concerns about my
health. I am fortunate to receive her love and care. I lost my mother five years back.
I am quite unfortunate to miss her blessings on this occasion. From my early years,
my parents instilled in me the dream of pursuing academic excellence. With deep
gratitude, love, and respect, I dedicate this book to my father.

Kharagpur, India
June 2020

Jayanta Mukhopadhyay
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