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Abstract. The smart city integrating the smart grid as an integral part of it to 
guarantee the ever-increasing electricity demand. After the recent outbreak of the 
COVID-19 pandemic, the socioeconomic severances affecting total levels of 
electricity demand, price, and usage trends. These unanticipated changes intro-
ducing new uncertainties in short-term demand forecasting since its result de-
pends on the recent usage as an input variable. Addressing this challenging situ-
ation, this paper proposes an electricity demand and price forecast model based 
on the LSTM Deep Learning method considering the recent demand trends. Real 
electricity market data from the Australian Energy Market Operator (AEMO) is 
used to validate the effectiveness of the proposed model and elaborated with two 
scenarios to get a wider context of the pandemic impact. Exploratory data anal-
yses results show hourly electricity demand and price reductions throughout the 
pandemic weeks, especially during peak hours of 8 am- 12 noon and 6 pm – 10 
pm. Electricity demand and price has been dropped by 3% and 42% respectively 
on average. However, overall usage patterns have not changed significantly com-
pared to the same period last year. The predictive accuracy of the proposed model 
is quite effective with an acceptably smaller error despite trend change phenom-
ena triggered by the pandemic. The model performance is comprehensively com-
pared with a few conventional forecast methods, Support Vector Machine (SVM) 
and Regression Tree (RT), and as a result, the performance indices RMSE and 
MAE have been improved using the proposed LSTM model. 

Keywords: COVID-19, pandemic, electricity demand and price forecast, 
LSTM, smart grid, smart city. 

1 Introduction 

Smart City can efficiently address the challenges of a growing population to manage 
their essential activities, such as energy, transport, health, and homes. A reliable and 
sustainable Smart Grid (SG) is essential for affordable electricity to smart city’s con-
sumers. However, the pandemic of COVID-19 affects almost all aspects of the com-
munity and eventually the concept of a smart grid. Due to the present circumstances of 
COVID-19, mass people are working from home, and the forced closure of industries 
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and other commercial activities significantly slacked down daily activities in compari-
son with the non-pandemic ones. The socioeconomic severances naturally affecting on 
total levels of electricity consumption, demand, price, and usage trends worldwide.  

This changed working condition eventually reflected in electricity grid planning, de-
mand scheduling, renewable source integrating, and spot pricing. Electricity demand 
and price forecasting have important roles in the economy, which is frequently used in 
business planning, policymaking, and market setting. Smart grids are depended on a 
forecasting model that is mostly designed and validated on historical data. However, 
there are no historical time-series smart grid data presents comparable to the COVID-
19 pandemic period. Consequently, the short-term forecasting algorithm’s performance 
is affected by the aforementioned uncertainty.  Therefore it is imperative to improve 
the forecasting accuracy in terms of the possible error reduction. 

Traditional forecasting methods, such as moving average (MA) and trend analysis, 
get complicated and limited if used in large time-series data set [1]. These methods are 
challenging to accurately measured and represented with detail dynamic operations oc-
curred because of the recent trend shift. Researchers have applied deep-learning meth-
ods, such as Artificial Neural Network (ANN), to improve the models’ prediction ac-
curacy by reducing errors and modelling complex patterns. In the context of such un-
certain times of pandemics, this paper aims to contribute and address the problems of 
implementing accurate and reliable demand and price forecast algorithm. First, an ini-
tial exploratory analysis of electricity demand and price time -series data is performed 
to compare the diurnal variation during the pandemic and non-pandemic periods. Sta-
tistical analysis is applied to evaluate the inconsistency and uncertainty of the forecast-
ing problem. Secondly, a single comprehensive model of the LSTM based sequence-
to-sequence network is proposed to forecast electricity demand and price. This model 
can effectively learn variable temporal correlation in the input sequence, which is com-
monly used for language translation [2]. Similar temporal correlations are also present 
in the electricity demand and price pattern. 

The arrangement of this paper is as follows: related work is given in Sect. 2. The 
theoretical background of this work is discussed in Sect.3. Section 4 describes the da-
taset used for this study. An empirical analysis of data is in Sect.5. The modeling results 
and discussions are presented in Sect. 6. Section 7 concludes the article. 

2 Related Work 

Deep learning has been increasingly involved in the forecasting methods [3] and is be-
ing applied effectively in various time series issues, such as language modelling [4], 
speech recognition [5], stock market prediction [6], and flood forecasting [7]. In [8], 
the researchers used a recurrent neural network (RNN) as an important approach for 
time-series forecasting. However, RNN shows inadequacy in learning long term de-
pendencies and relies on fixed-term to learn time-series sequence computation [9]. 
LSTMs, are a special type of RNN, could learn long-term dependencies by remember-
ing and collecting information of time-series [10].  Few other approaches were also 
implemented to enhance electricity demand or price forecasting performance, such as 
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feature selection and genetic algorithm to optimize a LSTM model [11], support vector 
regression (SVR), stacked auto-encoders (SAEs) with the extreme learning machine 
(ELM) [12], and stacked de-noising auto-encoders with SVR [13]. It is observable that 
the ANN-RNN based models are very common for related fields of electricity.  

The aforementioned methods could give good results, yet its algorithms are compli-
cated and difficult. This paper, therefore, proposes a single comprehensive model of 
the LSTM based sequence-to-sequence network to forecast electricity demand and 
price. Though such a model has recently been used in energy and weather forecasts, its 
application has not been used widely in terms of electricity demand and price forecast. 
In [14], LSTM was compared to the sequence-to-sequence network and in [15], se-
quence-to-sequence RNN was compared to standard RNN. In both studies, the se-
quence-to-sequence network provided better results than other models. A sequence-to-
sequence RNN was developed with an attention mechanism for the electric load fore-
cast in recent research [15], and a similar sample generation method was designed. In 
[16], A LSTM-based short-term load forecast model with two mechanisms is built. 
Their approach is similar to the language translation model in [2], where one LSTM is 
used to encode the input sequence into a fixed vector, and then need separate LSTM to 
decode the vector to a sequence of outputs with an attention mechanism to learn weight. 
The attention mechanism learns to weight the input features variable conditioned on the 
previous input(s) rather than fixed weighting features [2]. Alternatively, this research 
uses a simplified approach using a single LSTM that encodes and decodes both on the 
basis of the given inputs. This allows the LSTM to share weights between encoding 
and decoding. Therefore, no complicated attention mechanism is required for this 
straightforward sequence-to-sequence model. 

 

3 Theoretical Background  

3.1 Long Short Term Memory (LSTM) Network 

The LSTM’s key objective is to prevent the issue of vanishing gradient which occurs 
while training of backpropagation neural network (NN), and thus limiting the model’s 
ability to learn long-term temporal correlations [10].  All RNN follow the structure of 
a chain of recurring modules of NN. For regular RNNs, this recurring module will have 
a very simple structure, like a single tanh layer. The structure of LSTM includes addi-
tional three main gate structures: forget gate ( ௧݂), input gate ( 𝑖௧), and output gate (݋௧). 
Based on the LSTM unit defined in [17], for an input ݔ௧ at time step t, the LSTM cal-
culate a hidden state ℎ௧ and memory cell state ܥ௧ to encode all the observed state by the 
cell till time t. The LSTM network computes a mapping from an input sequence X = 
 The LSTM cell computation .(௠ݕ ,…ଶݕ ,ଵݕ) = to an output sequence Y (௡ݔ,…,ଶݔ,ଵݔ)
at time t, for an input ݔ௧:   

 ௧݂ = 𝛿( ௙ܹݔ௧ + ௙ܷℎ௧−ଵ + ௙ܾ)                    (1) 

 𝑖௧ = 𝛿ሺ 𝑖ܹݔ௧ + 𝑖ܷℎ௧−ଵ + ܾ𝑖ሻ  (2) 
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  ݃௧ = )ℎ݊ܽݐ ௚ܹݔ௧ + ௚ܷℎ௧−ଵ + ܾ௚)   (3) 

௧ܥ  = 𝑖௧ ∗  ݃௧ +  ௧݂  ௧−ଵ (4)ܥ ∗

௧݋  = 𝛿ሺ ௢ܹݔ௧ + ௢ܷℎ௧−ଵ + ܾ௢ሻ (5) 

 ℎ௧ = ௧݋ ∗  ௧ (6)ܥ ℎ݊ܽݐ

where 𝛿 and tanh are the activation function, W and U are the weight of forget gate, 
and b is the bias vector, ܥ௧−ଵ and ܥ௧are the cell states at time t -1 and t. 

3.2 Sequence-to-Sequence Network  

To forecast the values of future time steps of a sequence, a sequence-to-sequence re-
gression LSTM network can be trained. A typical sequence-to-sequence model consists 
of two phases, an encoder, and a decoder. It can take input sequence X (encoder) of 
variable length and change that in a fixed-length vector, which is then used as the input 
sequences for the next time step [2]. Hereby an output sequence Y (decoder) of n length 
is generated. In this case, at each time step of the input sequence, the LSTM network 
learns to forecast the value of the next n time steps. Therefore, during encoding, with 
input sequence X, the LSTM computes a sequence of hidden states (ℎଵ,ℎଶ,…,ℎ௡). Dur-
ing decoding it defines a distribution over the output sequence Y given the input se-
quence X as p(Y|X) is: 

,ଵݕሺ݌  … , ,ଵݔ|௠ݕ … , ௡ሻݔ = ∏ ,ݒ|௧ݕሺ݌ ,ଵݕ … , ௧−ଵ ሻ௠௧=ଵݕ       (7) 

where v is fixed dimensional vector representation of the X given by the last hidden 
state based on the recursion of the LSTM Eqs. (1) - (6), and the distribution 
of ݌ሺݕ௧|ݒ, ,ଵݕ … ,  ௧−ଵ ሻ is given by a softmax function (Eq. 8) to create a probabilityݕ
vector that helps determine the final output.  

ሻݕሺ݌  =  ௧ℎ௧ሻ (8)ݓሺݔܽ݉ݐ݂݋ݏ

where the softmax activation function calculates the probability of each recurrent 
weight using the state hidden (ℎ௧ሻሻ at current time step with each weight (ݓ௧ሻ. 

 

Fig. 1. The structure of Sequence-to-Sequence Network, (h,c) represents intermediate vector 

The proposed method, shown in Fig. 1, relies on a single LSTM for both the encoding 
and decoding phases. Thus parameter is shared within the encoding and decoding 
phases. The proposed model uses two LSTMs layers, the hidden state (ℎ௧ሻ) from the 

first LSTM layer is given as the inputሺݔ௧) to the second LSTM. The first LSTM layer 
is used to create the input sequence for time series data and the second layer is used to 
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create the prediction by the next output sequence. Forecasting model performance is 
measured by Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and 
correlation coefficient value (R2). A lower RMSE and MAE indicates better result, 
which measures the difference between the actual and forecast values. The R2 value is 
between 0 and 1 (0 means no correlation and 1 means no error), determines the corre-
lation between actual and predicted values. Figure 2 shows the step-by-step flowchart 
of this study that includes two steps: an analysis module and a forecasting module. 

 

Fig. 2. Flowchart of the proposed forecasting method   
 

3.3 Forecasting Model Description 

The proposed model used Dropout as a regularization methodology for fully connected 
neural network layers to avoid over-fitting, and improving accuracy on testing data 
[18]. All elements of an output layer are stored with probability p, alternatively set to 0 
with probability (1 - p). Eq. (12) shows in this case drop unit or not [18]. 

 𝑃ሺ݊ሻ = {ͳ − ݊ ݎ݋݂   ݌ = Ͳݎ݋݂   ݌ ݊ = ͳ                     (9) 

The simulation result’s precision is improved by adjusting and setting the model’s ap-
propriate variables to produce the desired output. The model parameter was set in a 
total of 36 settings to achieve best result. The initial learning rate of the experiment was 
set to 0.005, the number of hidden units was set to 200/100/50, set the number of iter-
ations to 300/250/200, Dropout (p = 0.5) and Adam (Adaptive Moment Estimation) 
optimizer algorithm is used for optimization to update network weights.  

4 Dataset and Data Preprocessing 

It is not immensely challenging to train a forecasting algorithm using historical data. 
However, social trends changed quite quickly due to the COVID-19 pandemic effect, 
which may cause the models built using historical data ineffective and incorrect. Since 
there are only months of data available for model training and testing processes and 
small amounts of data generally decrease model accuracy. To address this issue, 
AEMOs’ open dataset is used, which contains accumulated daily electricity demand 
(30 min MW) and price (30 min/ MWh) sampling rate [19]. This study used the range 
of data for the forecasting model is from January 2019 to August 2020. To analyse the 
impact on electricity demand and price profiles during COVID-19 and to evaluate the 
forecasting model, this study focuses on data from two states in Australia: New South 
Wales (NSW) and Victoria (VIC) as two different scenarios. The reasons for selecting 
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these states are: (1) NSW is the highest populated state and the restriction set to ease 
due to reduced infection rate, (2) VIC has the highest number of COVID 19 cases com-
pared to other states and is experiencing a second wave, not currently being seen in 
other states. Consequently, VIC is under strict restrictions. 

To enhance model efficiency, the cross-validation technique is used for the assess-
ment of the forecasting model [20]. Cross-validation stages include the splitting of the 
data set into training, and test data for unbiased performance comparison [20]. The data 
split of this research is 90% training and tests on the remaining 10%. The original data 
is pre-processed by standardization to improve the model prediction accuracy and to 
eliminate the training from deviating [21]. Standardize the data to have zero mean and 
unit variance to make it more effective: 

 ܺ௦௧𝑎௡ௗ =  𝑋− 𝜇𝜎                                   (10) 

Here, the standardized variable is ܺ௦௧𝑎௡ௗ which is equal to the original variable (x), 
minus its mean (𝜇), divided by its standard deviation (𝜎).   

5 Impact on Electricity Demand and Price during COVID-19 

The initial exploratory analysis of electricity demand and price data can be useful to 
better understand the dynamic changes and identify trends and patterns to the energy 
sector due to COVID-19. Due to the influence of several factors, such as temperature, 
day of the week, and variation of renewable sources, it is not easy and straightforward 
to determine the actual impact of the pandemic on the electricity demand and price. 

In Australia, the nationwide restrictions, which started in mid-March to control the 
spread of COVID-19, also resulted in decreased demand for electricity and price. Figure 
3 (a-d) follows four years (2017-2020) data of two seasonal patterns, autumn (March-
May) and winter (June-August) in NSW and VIC to show a comparison of change. As 
shown in Fig. 3, the NSW COVID-19 related demand decrease was highest compare to 
other year’s similar period. Regardless, demand reductions were declining from the end 
of May due to the winter season and easing restriction. However, VIC’s COVID-19 
demand reduction was steady. For both scenarios, residential demand increased due to 
shut-down and working from home setup, and commercial demand was reduced due to 
limited business activities. Cold temperatures have resulted in an average increased in 
residential demand in both states (Fig. 4) since it is more related to weather than other 
industries. Figure 3 shows a drastic price reduction in both states during the COVID-
19 period compare to the previous year’s similar time. During the pandemic, both states 
recorded its lowest average price since 2016 [19]. The pandemic has contributed to a 
major price drop in the international and local markets for crude oil, gas, and thermal 
coal [19]. This is a key factor of reduced spot price along with other factors including 
reduced demand and increased amount of renewable generation. 

   Figure 4 (a-b) shows the changing pattern of daily average electricity demand, 
price, temperature, and renewable and non-renewable contribution to demand in NSW 
and VIC, during the pandemic period from 1st March to 31st August 2020 (data adopted 
from [22]). The figures suggest that it is difficult to capture the unexpected shifts in 
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social behavior and pattern of work during the pandemic period since electricity gener-
ation (renewable and non-renewable), demand, price, and temperature change are not 
linear and not always following any pattern. Generally, the weather and different sea-
sons influence the demand and price of electricity. Throughout the pandemic period, 
electricity demand shows a predictable trend and rises at a consistent rate to keep state 
with the temperature, unlike the electricity price that changes very randomly with a few 
sudden price peaks and intermittently following any pattern. Besides, increased renew-
able sources that include increased rainfall, wind, and solar production, have contrib-
uted to lower prices for both of the scenarios. 

  

   
(a) NSW Demand (MW)                                   (b)  NSW Price (MWh) 

  
               (c) VIC Demand (MW)                                    (d) VIC Price (MWh) 

Fig. 3. Comparison of changing demand and price patterns for both scenarios from March-Au-
gust in 2017-2020.  

To analyse the daily real usage scenario during the pandemic period, demand/price data 
was grouped into weekdays and weekends, with the calculation of the average weekly 
time of use and compared to the same period of 2019. Hourly electricity demand and 
price show a clear reduction during the pandemic in NSW and VIC, especially during 
peak hours of 8 am- 12 noon and 6 pm – 10 pm. During the non-pandemic time, elec-
tricity price on weekdays is much higher than the weekend price, especially around 
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peak hours in both scenarios. Compared with the price curve during the pandemic pe-
riod, weekday and weekend are following a similar trend and overall price decreased 
in both peak and off-peak hours (Fig. 5). 

        
(a) NSW                                                                      (b) VIC 

Fig. 4. The changing pattern of daily average electricity demand, price, temperature, and renew-
able and non-renewable contribution in (a) NSW and (b) VIC during the COVID-19 period. 

  
                            (a)    Demand                                                          (b) Price 
Fig. 5. Weekly electricity time of use during COVID-19 and the same period of 2019 in (a) NSW 
and VIC demand (b) NSW and VIC Price 

Notably, overall demand and price patterns have not changed significantly compared 
to the same period last year (Fig. 5). This indicates people working from home are 
continuing regular activities and consuming electricity that remained usual morning 
and evening peak time trends during the COVID-19 pandemic. Statistical analysis is 
also performed to compare the changes.  A Variation Index (VI) is defined which pre-
sents the average reduction of demand/price to show the diurnal variation during the 
COVID-19 period (2020) compared to a benchmark period (2019) as follows:  

 ܸ𝐼𝑖௧ ∑ ሺݐ݋ܦ−ݐܿܦሻ𝑖=ͳ ×ͳͲͲ௡𝐷̅  (11) 

 
where ܸ𝐼𝑖௧ is the index value of i for time t, ܦ௖௧ is the current demand/price for time t 
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(weekday and weekend), ܦ௢௧ is the demand/price for the same time of a previous bench-
mark period, n is the number of recorded demand/price, and ̅ܦ is the average de-
mand/price during the previous benchmark period.  

 
Fig. 6. Variation Index (VI) between pandemic and non-pandemic period for NSW and VIC 

Figure 6 shows the VI for both of the states and the results show that NSW weekday 
electricity demand and price were decreased by 4% and 45% respectively on average, 
and on weekends it was 5% and 48% respectively during the strict restriction period 
(March-May). Compare to NSW, VICs’ demand reduction was lower on weekdays (av-
erage 1%), due to cooler weather. The weekend price was significantly dropped by 47% 
on average, whereas weekday prices reduced by only 29% on average. 

6 Forecasting Model Results And Discussion 

In this section, the proposed model forecasts the aforementioned two different scenarios 
(NSW and VIC) to get a wider context of the COVID-19 pandemic impact on electricity 
demand and price. The model has been trained and tested 9 times on independent data 
with different forecasting granularities (section 3.3). The simulation results explain the 
performance of the proposed model in addition to the RMSE and MAE errors. Table 1 
summarizes the best prediction results from 36 test results of two different scenarios. 

Figure 7 shows that the forecasted and the observed values mostly conform to each 
other. The blue line in each figure represents the observed values and the red line im-
plies the forecasted values. The forecast values quite closely match with the observed 
values of electricity demand data. However, compared to the demand forecast, spot 
pricing is not as accurate as expected in Fig. 7 (b) and (d). Figure 8 displays the 𝑅ଶ 
values for electricity demand and price for both scenarios. Whereas, the 𝑅ଶ of the elec-
tricity price for NSW and VIC are .78 and .88 respectively, between actual and pre-
dicted values. This indicates a moderate correlation and similarity with sect. 5 analysis 
that price VI was high and indistinct compare to demand during the pandemic period. 

Table 1. Comparison of electricity demand and price forecasting errors and test result (summary). 
 

 RMSE   MAE 
Observed    Forecasted                Relative error 

High Low high Low High       Low 

NSW 
Demand 58.21       40.51 11908.24        5630.73 11890.48      5567.92 0.17 0.62 

Price 29.67         7.36 1908.02           -12.84 1851.46         -20.35 0.56 0.07 

VIC 
Demand 41.44       30.69 7478.68         3054.77 7542.93         3058.37 0.60 0.036 

Price 33.46       10.76 1837.24           -48.72 1784.79         -42.45 0.52 0.06 
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           (a)    NSW electricity demand                              (b) NSW electricity price                                                                   

                            
         (c)    VIC electricity demand                                   (d) VIC electricity price 

Fig. 7. Electricity demand and price forecast based on the model output with the assumptions of 
the first scenario (a)-(b) NSW and second scenario (c)-(d) VIC. 

To evaluate the reliability of the proposed LSTM model, the highest and lowest ob-
served values from the test dataset are compared with the corresponding forecasted 
values. The forecasted highest and lowest electricity demand and price appear at the 
same time as the observed one in both scenarios. Both the highest records for demand 
and price for two scenarios were on a weekday and the lowest records were on week-
ends. The figures (relative error) in Table 1 show that in all forecast cases, the first 
scenario has a tendency to provide a better performance in demand values prediction 
and the second scenario is showing better result for price values. (Figs. 7 and 8).  

                
            (a)                                                                             (b) 

Fig. 8. Scatter plot to display coefficient correlation for electricity demand (a) and price (b) fore-

casting for both scenarios. 

To validate the performance of the proposed LSTM network, two other widely used 
conventional forecast methods, Support Vector Machine (SVM) and Regression Tree 
(RT), are also performed using the same dataset. Table 2 outlines the best possible re-
sults for each model. The findings indicate that the proposed model achieves the best 
results and compared to SVM and RT, the RMSE index of the proposed model has been 
averagely improved by 37% and 60% respectively in the case of electricity demand; 
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similarly, the MAE has been improved by 39% and 47% respectively. In the case of 
electricity price, the performance error RMSE shows an improvement of 19% and 22% 
compared with SVM and RT respectively; similarly, MAE has been improved by 20% 
and 32%, respectively. 

Table 2. Different methods of comparison 
                     Method RMSE MAE R2                         Method RMSE MAE R2 

NSW 
Electricity 
Demand 

SVM 88.28 65.52 .97 VIC 
Electricity 
Demand 

 SVM 68.82 51.39 .98 

RT 100.27 75.09 .97     RT 78.40 60.02 .98 
LSTM 58.21 40.51 .99  LSTM 41.44 30.69 .99 

     NSW 
Electricity 
     Price 

SVM 32 9.78 .49 VIC 
Electricity 

Price 

  SVM 48.23 12.76 .55 
RT 41.96 12.47 .12     RT 39.56 13 .53 

LSTM 29.67 7.36 .78  LSTM 33.46 10.76 .88 

 

7 Conclusion  

COVID-19 pandemic has significantly influenced people’s lifestyle in many ways. 
First, in two scenarios, the implications of the pandemic are being analysed from com-
prehensive perspectives on electricity demand and price data. The results show that 
different restriction measures in both scenarios and their impact on people's activities 
have considerably changed the electricity demand and price profile distinctively. For 
example, NSW with the highest population and less restrictive measures has more de-
mand and price reduction than VIC. Electricity demand has increased in July 2020 for 
both scenarios compared to the same period in 2019. Significant price reductions were 
observed on weekends by 48% for NSW and 47% for VIC due to lower demand, in-
creased renewable output, and lower oil prices. During the pandemic, overall demand 
and price patterns have not changed significantly compared to the same period last year 
even the total electricity production has dropped beside the demand. Residential de-
mand has increased due to shut-down, working from home setup, and winter weather; 
and commercial demand has reduced due to limited business activities. Since residen-
tial demand is related to weather than other industries and based on the Practice Theory 
[23], people’s activities at resident would be expressed as routine recurrent trends in 
terms of electricity usage, regardless of irregularity. Therefore, secondly, this paper 
proposes a LSTM based sequence-to-sequence network model to forecast electricity 
demand and price considering the current uncertain pandemic situation. This model can 
manage variable input and output length, and effectively learns temporal correlation in 
the input sequence to model temporal structure simultaneously. A few traditional fore-
cast models are comprehensively tested and compared to the proposed model on real 
market data.  Simulation results prove the effectiveness of the proposed method over 
others with smaller errors and good accuracy despite its conceptual simplicity. Future 
work will be focused on the severity and long term effect of the COVID-19 pandemic 
on the electricity market since we are still experiencing the pandemic. 
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