Skip to main content

An Approach for Fraction of Vegetation Cover Estimation in Forest Above-Ground Biomass Assessment Using Sentinel-2 Images

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1376))

Abstract

Forests are one of the most important components to balance and regulate the terrestrial ecosystem on the Earth in protecting the environment. Accurate forest above-ground biomass (AGB) assessment is vital for sustainable forest management to recognize climate change and deforestation for mitigation processes.

In this study, Sentinel 2 remote sensing image has been used to calculate the fraction of vegetation cover (FVC) in order to accurately estimate the forest above-ground biomass of Tundi reserved forest in the Dhanbad district located in the Jharkhand state, India. The FVC is calculated in four steps: first, vegetation index image generation; second, vegetation index image rescaled between 0 to 1; third, the ratio of vegetated and non-vegetated areas was calculated with respect to the total image area, and finally, FVC image is generated.

In this paper, three vegetation indices have been calculated from the Sentinel 2 image, namely: normalized difference vegetation index (NDVI), normalized difference index 45 (NDI45), and inverted red-edge chlorophyll index (IRECI). Then, the FVC images were generated from the above vegetation indices individually. The ground FVC values were estimated from 22 different locations from the study area. Finally, the image based FVC estimates were compared with the ground estimated FVC. The results show that the IRECI based FVC provided the best approximation to the ground FVC among the different vegetation indices tested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agata, H., Aneta, L., Dariusz, Z., Krzysztof, S., Marek, L., Christiane, S., Carsten, P.: Forest aboveground biomass estimation using a combination of sentinel-1 and sentinel-2 data. In: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 9026–9029. IEEE, July 2018

    Google Scholar 

  2. Chen, L., Ren, C., Zhang, B., Wang, Z., Xi, Y.: Estimation of forest above-ground biomass by geographically weighted regression and machine learning with Sentinel imagery. Forests 9(10), 582 (2018)

    Article  Google Scholar 

  3. Frampton, W.J., Dash, J., Watmough, G., Milton, E.J.: Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 82, 83–92 (2013)

    Article  Google Scholar 

  4. Nuthammachot, N.A., Phairuang, W., Wicaksono, P., Sayektiningsih, T. Estimating Aboveground biomass on private forest using sentinel-2 imagery. J. Sens. (2018)

    Google Scholar 

  5. Zhang, Y., Liang, S., Yang, L.: A review of regional and global gridded forest biomass datasets. Remote Sensing 11(23), 2744 (2019)

    Article  Google Scholar 

  6. Timothy, D., Onisimo, M., Cletah, S., Adelabu, S., Tsitsi, B.: Remote sensing of aboveground forest biomass: a review. Tropical Ecol. 57(2), 125–132 (2016)

    Google Scholar 

  7. Lu, X.T., Yin, J.X., Jepsen, M.R., Tang, J.W.: Ecosystem carbon storage and partitioning in a tropical seasonal forest in Southwestern China. Ecol. Manage. 260, 1798–1803 (2010)

    Article  Google Scholar 

  8. Qureshi, A., Pariva, B.R., Hussain, S.A.: A review of protocols used for assessment of carbon stock in forested landscapes. Environ. Sci. Policy 16, 81–89 (2012)

    Article  Google Scholar 

  9. ESA: Copernicus, Overview. ESA. 28 October 2014. Accessed 26 Apr 2016

    Google Scholar 

  10. Gomez, M.G.C.: Joint use of Sentinel-1 and Sentinel-2 for land cover classifi-cation: A machine learning approach. Lund University GEM thesis series (2017)

    Google Scholar 

  11. Zhang, S., Chen, H., Fu, Y., Niu, H., Yang, Y., Zhang, B.: Fractional vegetation cover estimation of different vegetation types in the Qaidam Basin. Sustainability 11(3), 864 (2019)

    Article  Google Scholar 

  12. Kumar, P., Krishna, A.P.: Forest biomass estimation using multi-polarization SAR data coupled with optical data. Curr. Sci. 119(8), 1316–1321 (2020)

    Google Scholar 

  13. Kumar, P., Krishna, A.P.: InSAR based Tree height estimation of hilly forest using multi-temporal Radarsat-1 and Sentinel-1 SAR data. IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. 12(12), 5147–5152 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra K. Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, P., Krishna, A.P., Rasmussen, T.M., Pal, M.K. (2021). An Approach for Fraction of Vegetation Cover Estimation in Forest Above-Ground Biomass Assessment Using Sentinel-2 Images. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1376. Springer, Singapore. https://doi.org/10.1007/978-981-16-1086-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1086-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1085-1

  • Online ISBN: 978-981-16-1086-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics