Skip to main content

Cancelable Biometric Template Generation Using Convolutional Autoencoder

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1376))

Abstract

Convolutional autoencoders are a great tool for extracting features from images and compressing them to a lower dimension called latent space. A latent space vector is generated from the input images by extracting the relevant and the most useful features required for approximating the images. In the proposed work, a convolutional autoencoder is used for feature extraction, random noise and random convolution are used for generating cancelable template from these features. This architecture has been trained for palm vein, wrist vein, and palm print images combined from different datasets namely, CASIA, CIEPUT, and PolyU. The proposed method has been experimented and evaluated for various modalities such as palm print, palm vein, and wrist vein. The evaluation of these methods has been done in three different scenarios for addressing different uses and attacks possible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Casia palmprint database. http://biometrics.idealtest.org/

  2. Cie biometrics palmvein database. https://biometrics.cie.put.poznan.pl

  3. Cie biometrics wristvein database. https://biometrics.cie.put.poznan.pl

  4. Ali, M.A., Tahir, N.M.: Cancelable biometrics technique for iris recognition. In: 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp. 434–437. IEEE (2018)

    Google Scholar 

  5. Cao, X., Shen, W., Yu, L.G., Wang, Y., Yang, J.Y., Zhang, Z.: Illumination invariant extraction for face recognition using neighboring wavelet coefficients. Pattern Recogn. 45(4), 1299–1305 (2012)

    Article  Google Scholar 

  6. Deshmukh, M., Balwant, M.K.: Generating cancelable palmprint templates using local binary pattern and random projection. In: 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 203–209. IEEE (2017)

    Google Scholar 

  7. Gomez-Barrero, M., Galbally, J., Rathgeb, C., Busch, C.: General framework to evaluate unlinkability in biometric template protection systems. IEEE Trans. Inf. Forensics Secur. 13(6), 1406–1420 (2017)

    Article  Google Scholar 

  8. Jang, Y.K., Cho, N.I.: Deep face image retrieval for cancelable biometric authentication. In: 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8. IEEE (2019)

    Google Scholar 

  9. Kanhangad, V., Kumar, A., Zhang, D.: Contactless and pose invariant biometric identification using hand surface. IEEE Trans. Image Process. 20(5), 1415–1424 (2010)

    Article  MathSciNet  Google Scholar 

  10. Kaur, H., Khanna, P.: Biometric template protection using cancelable biometrics and visual cryptography techniques. Multimed. Tools Appl. 75(23), 16333–16361 (2015). https://doi.org/10.1007/s11042-015-2933-6

    Article  Google Scholar 

  11. Kaur, H., Khanna, P.: Cancelable features using log-Gabor filters for biometric authentication. Multimed. Tools Appl. 76(4), 4673–4694 (2017)

    Article  Google Scholar 

  12. Kaur, H., Khanna, P.: Random distance method for generating unimodal and multimodal cancelable biometric features. IEEE Trans. Inf. Forensics Secur. 14(3), 709–719 (2018)

    Article  Google Scholar 

  13. Kim, J., Teoh, A.B.J.: One-factor cancellable biometrics based on indexing-first-order hashing for fingerprint authentication. In: 24th International Conference on Pattern Recognition (ICPR), pp. 3108–3113. IEEE (2018)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Kumar, N., Rawat, M.: RP-LPP: a random permutation based locality preserving projection for cancelable biometric recognition. Multimed. Tools Appl. 79(3), 2363–2381 (2020)

    Article  Google Scholar 

  16. Lee, D.H., Lee, S.H., Cho, N.I.: Cancelable biometrics using noise embedding. In: 24th International Conference on Pattern Recognition (ICPR), pp. 3390–3395. IEEE (2018)

    Google Scholar 

  17. Maiorana, E., Campisi, P., Fierrez, J., Ortega-Garcia, J., Neri, A.: Cancelable templates for sequence-based biometrics with application to on-line signature recognition. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(3), 525–538 (2010)

    Article  Google Scholar 

  18. Nguyen, T.A.T., Dang, T.K., Nguyen, D.T.: A new biometric template protection using random orthonormal projection and fuzzy commitment. In: Lee, S., Ismail, R., Choo, H. (eds.) IMCOM 2019. AISC, vol. 935, pp. 723–733. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19063-7_58

    Chapter  Google Scholar 

  19. Patel, V.M., Ratha, N.K., Chellappa, R.: Cancelable biometrics: a review. IEEE Signal Process. Mag. 32(5), 54–65 (2015)

    Article  Google Scholar 

  20. Petrovska-Delacrétaz, D., Chollet, G., Dorizzi, B.: Guide to Biometric Reference Systems and Performance Evaluation. Springer, London (2009). https://doi.org/10.1007/978-1-84800-292-0

  21. Phillips, T., Zou, X., Li, F., Li, N.: Enhancing biometric-capsule-based authentication and facial recognition via deep learning. In: Proceedings of the 24th ACM Symposium on Access Control Models and Technologies, pp. 141–146 (2019)

    Google Scholar 

  22. Pillai, J.K., Patel, V.M., Chellappa, R., Ratha, N.K.: Secure and robust iris recognition using random projections and sparse representations. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1877–1893 (2011)

    Article  Google Scholar 

  23. Ratha, N., Connell, J., Bolle, R.M., Chikkerur, S.: Cancelable biometrics: a case study in fingerprints. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 4, pp. 370–373. IEEE (2006)

    Google Scholar 

  24. Srinivasan, A., Balamurugan, V.: Occlusion detection and image restoration in 3D face image. In: TENCON 2014 IEEE Region 10 Conference, pp. 1–6. IEEE (2014)

    Google Scholar 

  25. Wang, S., Hu, J.: Design of alignment-free cancelable fingerprint templates via curtailed circular convolution. Pattern Recogn. 47(3), 1321–1329 (2014)

    Article  Google Scholar 

  26. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: HiDDeN: hiding data with deep networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 682–697. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_40

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourav Siddhad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siddhad, G., Khanna, P., Ojha, A. (2021). Cancelable Biometric Template Generation Using Convolutional Autoencoder. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1376. Springer, Singapore. https://doi.org/10.1007/978-981-16-1086-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1086-8_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1085-1

  • Online ISBN: 978-981-16-1086-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics