Skip to main content

DeblurRL: Image Deblurring with Deep Reinforcement Learning

  • Conference paper
  • First Online:
Book cover Computer Vision and Image Processing (CVIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1377))

Included in the following conference series:

  • 1469 Accesses

Abstract

Removing non-uniform blur from an image is a challenging computer vision problem. Blur can be introduced in an image by various possible ways like camera shake, no proper focus, scene depth variation, etc. Each pixel can have a different level of blurriness, which needs to be removed at a pixel level. Deep Q-network was one of the first breakthroughs in the success of Deep Reinforcement Learning (DRL). However, the applications of DRL for image processing are still emerging. DRL allows the model to go straight from raw pixel input to action, so it can be extended to several image processing tasks such as removing blurriness from an image. In this paper, we have introduced the application of deep reinforcement learning with pixel-wise rewards in which each pixel belongs to a particular agent. The agents try to manipulate each pixel value by taking a sequence of appropriate action, so as to maximize the total rewards. The proposed method achieves competitive results in terms of state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://seungjunnah.github.io/Datasets/gopro.

References

  1. Chakrabarti, A.: A neural approach to blind motion deblurring. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 221–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_14

    Chapter  Google Scholar 

  2. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An introduction to deep reinforcement learning. arXiv preprint arXiv:1811.12560 (2018)

  3. Furuta, R., Inoue, N., Yamasaki, T.: Pixelrl: fully convolutional network with reinforcement learning for image processing. IEEE Trans. Multi. 22(7), 1702–1719 (2019)

    Google Scholar 

  4. Hyun Kim, T., Mu Lee, K.: Segmentation-free dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2766–2773 (2014)

    Google Scholar 

  5. Kingma, D.P., Ba., J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  6. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)

    Google Scholar 

  7. Li, D., Wu, H., Zhang, J., Huang., K.: A2-rl: aesthetics aware reinforcement learning for image cropping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8193–8201 (2018)

    Google Scholar 

  8. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1928–1937 (2016)

    Google Scholar 

  9. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  10. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)

    Google Scholar 

  11. Schuler, C.J., Hirsch, M., Harmeling, S., Schölkopf, B.: Learning to deblur. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1439–1451 (2015)

    Article  Google Scholar 

  12. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 769–777 (2015)

    Google Scholar 

  13. Tokui, S., et al.: Chainer: a deep learning framework for accelerating the research cycle. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2002–2011 (2019)

    Google Scholar 

  14. Xu, L., Jimmy, S.J., Ren, C.L., Jia, J.: Deep convolutional neural network for image deconvolution. Adv. Neural Inf. Process. Syst. 27, 190–1798 (2014)

    Google Scholar 

  15. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 3929–3938 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jai Singhal or Pratik Narang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singhal, J., Narang, P. (2021). DeblurRL: Image Deblurring with Deep Reinforcement Learning. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1377. Springer, Singapore. https://doi.org/10.1007/978-981-16-1092-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1092-9_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1091-2

  • Online ISBN: 978-981-16-1092-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics