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Abstract 

Recently, visual encoding based on functional magnetic resonance imaging (fMRI) have 

realized many achievements with the rapid development of deep network computation. Visual 

encoding model is aimed at predicting brain activity in response to presented image stimuli. 

Currently, visual encoding is accomplished mainly by firstly extracting image features through 

convolutional neural network (CNN) model pre-trained on computer vision task, and secondly 

training a linear regression model to map specific layer of CNN features to each voxel, namely 

voxel-wise encoding. However, the two-step manner model, essentially, is hard to determine 

which kind of well features are well linearly matched for beforehand unknown fMRI data with 

little understanding of human visual representation. Analogizing computer vision mostly 

related human vision, we proposed the end-to-end convolution regression model (ETECRM) 

in the region of interest (ROI)-wise manner to accomplish effective and efficient visual 

encoding. The end-to-end manner was introduced to make the model automatically learn better 

matching features to improve encoding performance. The ROI-wise manner was used to 

improve the encoding efficiency for many voxels. In addition, we designed the selective 

optimization including self-adapting weight learning and weighted correlation loss, noise 

regularization to avoid interfering of ineffective voxels in ROI-wise encoding. Experiment 

demonstrated that the proposed model obtained better predicting accuracy than the two-step 

manner of encoding models. Comparative analysis implied that end-to-end manner and large 

volume of fMRI data may drive the future development of visual encoding. 

Introduction 

In neuroscience, the mechanisms by which visual stimuli are encoded by neurons has yet to be 

elucidated. Functional magnetic resonance imaging (fMRI)[1] can reflect brain activity 

effectively, hence, visual encoding models[2, 3] that predict corresponding fMRI signal in 

response to external visual stimuli, have attracted much too attention in these years. During 

constructing computation models, new knowledge about the mechanisms can be discovered or 

validated[4, 5]. In addition, visual encoding is also the base of visual decoding[6-10] that predict 

stimuli information from fMRI signal, as well as some applications of brain-machine 

interfaces[11]. 

In human vision system, the mapping from external visual stimuli to human activity is usually 

deemed highly nonlinear. In order to stimulate the nonlinear mapping, linearizing encoding 

manner[3] is the first option and has been used widely in the visual encoding domain, although 

non-linearizing encoding manner also has started to attract attention[12]. The kind of linearizing 

encoding method is mainly composed of one nonlinear mapping from visual stimuli space to 
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feature space, and one linear mapping from feature space to brain activity space. The plain 

linear regression model with specific regularization is used to realize the linear mapping, hence, 

constructing one encoding model almost focuses on the nonlinear mapping part, namely feature 

transformation or feature representation[13]. 

In computer vision domain, how to construct the better nonlinear feature transformation aimed 

is also the most critical part regardless of image classification or object detection or other task[14, 

15]. It is obvious that visual encoding and computer vision domain share a lot in term of feature 

transformation. Hence, visual encoding models are designed mainly based on existing feature 

transformation in computer vision. In the early period of computer vision domain, many 

methods mainly depend on some hand-crafted feature transformation[16], such as gabor wavelet 

pyramid (GWP)[17], histogram of oriented gradient (HOG)[18], local binary patterns (LBP)[19], 

scale-invariant feature transform (SIFT)[20], and et al. Kay et al. employed GWP features to 

construct the famous encoding model[21], and obtained major improvement for encoding 

primary visual cortices. For high-level visual cortices, visual encoding models are usually 

based on hand-marked semantic labels[4], because high-level semantic features are hard to 

design manually. Since the big breakthrough[22] made by deep network and big data[23], deep 

network with hierarchical feature transformation have driven the enormous advance in 

computer vision domain[24, 25]. In contrast, deep network can automatically learn or mine 

effective features from big data for specific task, especially for those task that requires high-

level semantic features. Shortly afterwards, the hierarchical and powerful feature 

transformation was introduced into visual encoding domain[26], and obtained better encoding 

performance and deeper understanding of human vision system once again[27-30]. Recently, 

visual encoding has had many achievements with the rapid development of deep network 

computation, including some new network architectures, such as ResNet[31], recurrent neural 

network[32], variational autoencoder[33] and capsule network[34]. From the above review, the 

two domains have been crossing and learning from each other. Researchers have been pursuing 

a kind of well matching nonlinear feature transformation with human vision system. Besides, 

how to choose suitable features is important and directly influences encoding performance. 

Currently, some hand-crafted and learned features have been validated and accepted, for 

example, Gabor features are fit for visual representation of primary visual cortices, and 

hierarchical pre-trained convolutional neural network (CNN) architecture better accords with 

hierarchical visual representation in human vision system. Although these method have 

obtained fine results, there is still far from accurately predicting human brain activity[8, 30], 

which suggests that these features still are not optimally matched to brain activity, hence, are 

not optimal for visual encoding. However, it is hard to determine what kind of feature 

transformation is the optimal for visual encoding, with only little unclear prior information at 

hand. These prior information usually confines that primary and high-level visual cortices are 

responsible for low-level features (edges, corner, and so on) and abstract features (object shape, 

category, and so on), respectively. Hence, a very natural question emerges for visual encoding 

domain: with the development from hand-crafted feature to deep learning features, from 

computer vision to visual encoding domain, what is next breakthrough for visual encoding? 

In conclusion, current encoding paradigm can be defined as the two-step manner of encoding 

including firstly choosing well matching feature transformation with corresponding brain 

activity, and secondly encoding each voxel through linear regression. Essentially, this kind of 

two-step manner easily fall into local optimal status, and cannot approach to global optimal 

status. Analogizing computer vision, except CNN architecture, end-to-end manner and big data 

also play an important role in improving the performance of two-step manner of features 

engineering (eg. hand-crafted features and classifiers for classic classification task) and have 
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driven enormous advance in computer vision. CNN features have been used to encode voxels, 

but the employed CNN feature extractor is learned from computer vision task instead of visual 

encoding task. Hence, they are hard to match with beforehand unknown fMRI data. That is to 

say, data and task are mismatching[35], which makes it inappropriate to directly transfer fixed 

CNN feature extractor into visual encoding domain. Inspired by which, we think about 

abandoning two-step manner of encoding and introducing the end-to-end manner into encoding 

model. In this way, the encoding model can automatically learn optimally matching features 

and linear weights (linear regression) from fMRI data for visual encoding. 

Previously, the linear regression model used voxel-wise manner[3], and one individual linear 

regression model needs to be trained for each voxel. Eventually, thousands of regression 

models are constructed for several visual regions of interest (ROIs). In order to improve the 

encoding efficiency, we assume that voxels from one visual ROI can be characterized by one 

kind of specific features and propose a new ROI-wise encoding model that encodes entire 

voxels in each visual ROI once. 

However, not all voxels in one visual ROI can be effectively or easily encoded, which can be 

seen from encoding results of many previous work. The phenomenon may be caused by two 

aspect of problem: employed features are not fit for those voxels, and those voxels cannot be 

effectively encoded because of much low signal to noise ratio (SNR) that makes them unable 

to reflect the representations of presented stimuli. The first problem can be solved by better 

matching features learned through end-to-end manner. The second problem indicated that there 

may exist ineffective voxels in each visual ROI and these ineffective voxels will influence the 

optimization of effective voxels during the ROI-wise encoding. Hence, the end-to-end 

encoding manner needs the selective optimization that learns those features related with 

effective voxels and ignores those ineffective voxels. In order to deal with the problem, we 

propose to employ a series of operations for selective optimization to construct an encoding 

model in an end-to-end manner.  

In this study, our main contributions are as follows: 1) we analysed current drawbacks of visual 

encoding in terms of the development of computer vision and visual encoding domain; 2) we 

introduced the end-to-end manner to learn better matching features to encode voxels for entire 

voxels of each visual ROI; and 3) we proposed a series of optimization operations to realize 

selective optimization during ROI-wise encoding in the end-to-end manner.  

Materials and Methods 

Experimental data 

The dataset employed in our work was from the previous studies[21, 36]. The dataset had visual 

stimuli and corresponding fMRI data, consisting of 1750 training samples and 120 testing 

samples. The detailed information about the visual stimuli and fMRI data could refer to the 

previous studies[21, 36], and the dataset can be downloaded from http://crcns.org/data-

sets/vc/vim-1.  

The visual stimuli consisted of sequences of natural photographs, which were mainly obtained 

from the famous Berkeley Segmentation Dataset[37]. The content of the photographs included 

animals, buildings, food, humans, indoor scenes, manmade objects, outdoor scenes, and 

textures. Photographs were converted into greyscale, and downsampled to 500 pixels. The 

photographs (500 × 500 pixels) presented to subjects were obtained by centrally cropping, 
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masking with a cycle, placing on a grey background, and adding a white square with size of 4 

× 4 pixels in the central position. In total, 1870 images (1750 and 120 images for training and 

testing, respectively.).  

Photographs were presented in successive 4s trials. Each trail contained 1s of the photograph 

presentation with 200ms flashing frequency and 3s of grey background presentation. The 

corresponding fMRI data was collected when two subjects viewed the photographs and focused 

on the central white square of the photographs. The experiment of each subject was composed 

of five scan sessions, and each session had five training runs and two testing runs. 70 different 

images were presented two times during every training run and 12 different images were 

presented 13 times during testing run. Images were randomly selected for each run but they 

were different in every run. Therefore, all 1750 different (5 sessions × 5 runs × 70) images and 

120 different (5 sessions × 2 runs × 12) images for training and testing were presented to the 

subjects. 

The 4T INOVA MRI system with a quadrature transmit/receive surface coil was used to 

acquire fMRI data. The repetition time (TR) was 1s and isotropic voxel size was 2×2×2.5 mm3 

in the single-shot gradient EPI sequence. The acquired data was subjected to a series of pre-

processing including phase correction, sinc interpolation, motion correction, and co-

registration with the anatomical scan. Voxels were assigned to each visual area based on the 

retinotopic mapping experiment performed in separate session. Voxels in five regions of 

interest (V1, V2, V3, V4, and LO) from low-level to high-level visual cortices were collected 

in the dataset. 

The overview of proposed method 

Generally, two-step manner of visual encoding needs two computation models to accomplish 

the encoding of voxels. As shown in the Figure 1a, the first model is used to map input stimulus 

space to feature space (S2F model: feature transformation), and the second model is used to 

map feature space to voxel space (F2V model: regression). Usually, parameter of S2F model 

is fixed and does not need to be retraining, and only linear weights of F2V regression model 

need to be trained. The famous GWP model based on Gabor features can be seen in the Figure 

1b. CNN features based two-step manner of encoding model only replaces the Gabor features 

by CNN features, and similarly the parameters of CNN is fixed.  

Convolutional neural network (CNN) with powerful feature representation have been widely 

used in computer vision domain. In this study, we proposed to employ convolutional regression 

model and train it in the end-to-end manner (ETECRM) in order to avoid the local optimal of 

two-step manner of visual encoding (see detailed analysis in the Introduction section). As 

shown in the Figure 1c, the convolution regression model also can be divided into two parts, 

and front convolutional operations belong to S2F part and the last linear fully connected (fc) 

layer is F2V part. Most importantly, the ETECRM is trained in the end-to-end manner. End-

to-end learning manner is from deep network learning process in which all of the parameters 

are trained jointly, instead of step by step. For visual encoding, it means that directly learning 

the mapping from stimulus space to voxel space (S2V model), that is to say, the parameters of 

S2F part and F2V part in the convolution regression model are learned in the same time from 

fMRI data samples. In this way, S2F part can approach to better feature transformation and 

obtain better encoding performance during optimization. 
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Different from general linear regression with regularization, F2V part or fc layer employed 

self-adapting regression weights to render voxels can pay more attention to those features well 

related with themselves. In addition, ROI-wise encoding manner is used to replace the 

traditional voxel-wise encoding, which can be seen from Figure 1. About the loss, we employed 

relation (PC) instead of mean square error (MSE) between observed and predicted responses. 

In order to avoid the interfering of ineffective voxels during ROI-wise encoding, weighted 

correlation loss and noise regularization are used to accomplish selective optimization. In 

conclusion, the proposed method is trained in the end-to-end manner and map stimuli to entire 

voxels of visual ROI once, which realize an effective and efficient visual encoding model. 

Next sections introduces the details of the proposed convolution regression model, loss 

function for the selective optimization, corresponding control models and the quantification 

method. 

   

Figure 1. The proposed method including end-to-end learning and ROI-wise encoding. a. Three 

spaces and two mapping are included in the linearizing encoding manner. b. Two-step manner 

of visual encoding including nonlinear feature transformation with fixed parameter and linear 
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regression mapping. c. Convolution regression model for ROI-wise encoding in an end-to-end 

learning manner.  

CNN feature transformation and self-adapting regression  

In the ETECRM, F2V part mainly includes several convolutional layers and is used to extract 

features of input image stimuli. Through the stack of convolution filters with setting stride 2 

and Rectified Linear Unit (ReLU) activation function, defined feature transformation 𝐹𝒘𝒄
 in 

the Equation (1) can transform one image stimulus 𝑠𝑖  into convolution features 𝒇𝒊 , and 𝒘𝒄 

represents the weights of all convolutional filters in S2V part. As shown in Equation (2), 

predicted voxels 𝒗′ in specific visual ROI can be obtained based on one linear regression model. 

In this study, we assume that bigger weight values in matrix 𝒘𝒇𝒄 imply that corresponding 

features are more important than those features whose corresponding weight values are smaller. 

Hence, we replace 𝒘𝒇𝒄 with 𝒘𝒇𝒄
𝟐 . In this way, weight learning can dynamically adjust learning 

rate of weights according current status. Equation (3) give the computation of gradient through 

the backpropagation[38] with chain rule, hence, learning rate of weights becomes self-adapting 

𝝁𝒘𝒇𝒄 from unified learning rate 𝝁 during optimization.  

𝒇𝒊 = 𝐹𝒘𝒄
(𝑠𝑖)     (1) 

𝒗′ = 𝒘𝒇𝒄𝑓𝑖 + 𝒃 → 𝒗′ = 𝒘𝒇𝒄
2 𝒇𝒊 + 𝒃     (2) 

∆𝒘𝒇𝒄 = 𝝁𝒘𝒇𝒄∆𝒗′     (3) 

Weighted correlation loss function and noise regularization 

In the linear regression mapping, predicted 𝒗′ represents entire voxels in specific ROI (V1, V2, 

V3, V4, or LO). Hence, in order to relieve the influence of those ineffective voxels during 

optimizing effective voxels in the ROI-wise encoding, we add gauss noise 𝒏𝒈 with zero mean 

one variance multiplying by 𝜑 on the each of predicted voxels 𝒗′ to restrain those ineffective 

voxels in the Equation (4). The added noise can make those ineffective voxels harder to 

optimize from the perspective of SNR. In order to update weights of S2F and F2V parts of 

ETECRM in and end-to-end manner, we construct one unique loss function. Instead of using 

MSE, we used PC to measure the predicting performance and Equation (5) presents the 

computation of correlation for 𝑘th voxels in specific visual ROI. Note that, in the experiment, 

𝒗𝒌 is matrix with dimensionality (m×n). n is the number of voxels in specific ROI, and m 

represents a batch of samples according to a batch of image stimuli and corresponding CNN 

features, in this way, each predicted voxel k in one ROI have an PC value defined as 𝑐𝑜𝑟𝑘.  

𝒗′ = 𝒗′ + 𝜑 ∙ 𝒏𝒈     (4) 

𝑐𝑜𝑟𝑘 = 𝑐𝑜𝑟(𝒗𝒌, 𝒗𝒌
′ ) =

𝐶𝑜𝑣(𝒗𝒌,𝒗𝒌
′ )

√𝑉𝑎𝑟(𝒗𝒌)∙𝑉𝑎𝑟(𝒗𝒌
′ )

   (5) 

Instead of computing the mean value of PC value as loss function for all voxels in entire ROI, 

we think of introducing the weighted PC loss defined as 𝐿 to further make the optimization pay 

attention to those effective voxels. However, whether the 𝑘th voxel is important is unknown 

before optimization, hence the corresponding weight 𝜂𝑘 is hard to determine in Equation (6). 
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In this study, we employed current iteration of 𝑐𝑜𝑟𝑘 to construct corresponding weights. The 

𝑐𝑜𝑟𝑘 ranges from -1 to 1, and the absolute value of 𝑐𝑜𝑟𝑘 imply the importance of the 𝑘th voxel. 

In this way, we use the 𝑐𝑜𝑟𝑘
2 as the weight in Equation (7), and can realize dynamic adjustment 

during the optimization. In addition, noise regularization is added to prevent the predicted 

voxels 𝒗′ from becoming bigger to make the added gauss noise 𝒏𝒈 ineffective. Equation (8) 

gives the final loss function, and the parameter 𝛾 is used to adjust the proportion of the regular 

term and fidelity term. In the end-to-end learning, all parameters (𝒘𝒄 and 𝒘𝒇𝒄) in the ETECRM 

can be updated at the same time. Equation (9) gives the final optimization problem. We solve 

the problem through gradient descent based on the open source of deep learning framework 

PyTorch[39]. 

𝐿 =
∑ 𝜂𝑘𝑐𝑜𝑟𝑘𝑘

𝑛
+ 𝛾 |

∑ 𝑣𝑘
′

𝑘

𝑛
|   (6) 

𝜂𝑘 = 𝑐𝑜𝑟𝑘
2     (7) 

𝐿 =
∑ 𝜂𝑘𝑐𝑜𝑟𝑘𝑘

𝑛
+ 𝛾 |

∑ 𝑣𝑘
′

𝑘

𝑛
| =

∑ 𝑐𝑜𝑟𝑘
3

𝑘

𝑛
+ 𝛾 |

∑ 𝑣𝑘
′

𝑘

𝑛
|   (8) 

𝒘′ = argmax
𝒘={𝒘𝒄; 𝒘𝒇𝒄}

𝐿 = argmax
𝒘={𝒘𝒄; 𝒘𝒇𝒄}

(
∑ 𝑐𝑜𝑟𝑖

3
𝑖

𝑛
+ 𝛾 |

∑ 𝑣𝑖
′

𝑖

𝑛
|)    (9) 

 

Control models and quantification of encoding performance 

In order to validate the performance of our proposed model, we compare it with two control 

encoding models. The first model is the classic GWP based model[21] (GWPM). The GWPM 

is a two-step and voxel-wise encoding model that uses Gabor wavelet pyramid basis functions 

to construct the feature representation. The mapping from the feature space to the brain activity 

space is implemented using sparse linear regression[40]. The second model is CNN features 

based model (CNNM), which is similar to the method described in[28]. This model is a two-

step and voxel-wise encoding model and uses the pre-trained CNN features in AlexNet[22] as 

nonlinear feature extractors to construct the feature space. This linear mapping uses the same 

sparse linear regression approach as above. Since AlexNet has 8 layers and in theory any layer 

can be used as the feature space to predict response, we established 8 encoding models from 

layer 1 to layer 8 respectively and select the model with the highest prediction accuracy as the 

control model. 

We define the prediction accuracy for a voxel as the Pearson correlation (PC) between the 

observed and the predicted responses across all 120 images in the testing set. For each voxel, 

we calculated the corresponding prediction accuracy for the three models (GWPM, CNNM, 

and ETECRM). We firstly made a scatter plot in which each dot corresponds to a single voxel 

(Figure 4a and 5a). The ordinate value of each dot represents the prediction accuracy of one 

control model (GWPM or CNNM), while the abscissa value represents the prediction accuracy 

of the ETECRM. Secondly, we plotted the distribution of prediction accuracy difference of the 

voxels on whom both models yielded significant prediction. Here, the correlation threshold for 

significance prediction is 0.27 (p<0.001)[21] (Figure 4b and Figure 5b). Lastly, the voxels in 

each ROI were sorted in the descending order of the prediction accuracy values (Figure 6), in 
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order to analyse the relationship between the prediction accuracy and the number of effective 

encoding voxels in the three models. 

Results 

Experiment Details 

The table 1 presents the details of network configuration and Table 2 presents corresponding 

encoding performance for the two subjects. Because lower-level and higher-level visual ROIs 

have smaller and bigger receptive fields, respectively, the S2F part used for feature 

transformation employed smaller convolutional kernel (3×3) for V1 and V2, and bigger 

convolutional kernel (5×5) for V3, V4, and LO. The F2V part includes one fully connected (fc) 

layer for linear regression. Super parameter 𝜑 and 𝛾 is given in the Table 2. During the end-to-

end training, we employ PyTorch deep network framework[39], set batch size as 64, and use 

Adam optimization (learning rate is 0.001) to update parameters of S2F and F2V part all 

together through gradient descent. About 20 epochs are required to accomplish the training on 

the Ubuntu 16.04 system with one NVIDIA Titan Xp graphics card.  

Table 1: Network configuration. The “conv” represents the convolutional layer with the kernels “3×3” or “5×5”, 

and “fc” is the fully connected layer used as regression from features to predicted voxels. 

ROI V1 V2 V3 V4 LO 

S2F part 3×conv (3×3) 3×conv (3×3) 3×conv (5×5) 4×conv (5×5) 4×conv (5×5) 

F2V part 1×fc 1×fc 1×fc 1×fc 1×fc 

Mean Person correlation (PC) of entire voxels and selected effective voxels (Topk, k=300) in 

each visual ROI are given in Table 2, and detailed comparison with control models can be seen 

in the below subsection. Figure 2 presents the trend of the predicting accuracy during training 

an end-to-end encoding model for V1, and demonstrates robust and stable performance through 

the selective optimization including self-adapting weights, weighted correlation loss and noise 

regularization. Meanwhile, we can see that many voxels are not successfully encoded, in terms 

of big difference between mean and Top300 correlation, which validate the necessary of 

selective optimization in ROI-wise encoding. 

Table 2: Encoding performance for the two subjects. “Mean PC” represents the mean Person correlation of 

entire voxels in specific visual ROI, and “Top 300 PC” represents the mean Person correlation of top 300 voxels 

in specific visual ROI.  

Subject - V1 V2 V3 V4 LO 

Subject 1 

𝜑 1.0 1.0 1.0 1.0 1.0 

𝛾 1e-3 1e-3 1e-4 1e-5 1e-5 

Mean PC 0.257 0.189 0.110 0.085 0.046 

Top300 PC 0.650 0.612 0.429 0.312 0.131 

Subject 2 

𝜑 0.1 0.1 0.1 0.1 0.1 

𝛾 1e-4 1e-4 1e-5 1e-5 1e-5 

Mean PC 0.162 0.129 0.067 0.043 0.029 

Top300 PC 0.491 0.442 0.248 0.052 0.031 
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Figure 2: The trend of prediction accuracy on training set and testing set during training encoding model for V1. 

The stable performance indicate the robustness of end-to-end training, and “Top300” represents the mean 

correlation of selected voxels with top 300 predicting accuracy. 

Selective optimization  

A series of optimization strategies including self-adapting regression weights, weighted 

correlation loss and noise regularization are used in the proposed ETECRM in order to 

selectively optimize those effective voxels and suppress those ineffective voxels. Figure 3 

presents the distribution of prediction accuracy of V1 area (1294 voxels in all) on training set 

and testing set, respectively. We can see the sparse distribution of predicting correlation, and 

voxels have higher or lower predicting correlation. By restraining those ineffective voxels and 

paying more attention to those important voxels, the model can automatically learn effective 

features suitable for important voxels from fMRI data in an end-to-end manner, and obtain 

better encoding performance (See Figure 4 and 5). The sparse distribution validate the selective 

optimization of proposed method during ROI-wise encoding.  

 

Figure 3: The distribution of prediction correlation of each voxels in V1 area on (a) training set and (b) testing 

set during optimization, respectively. 
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Comparison with two-step manner of visual encoding 

Firstly, we compare with GWPM in terms of prediction accuracy in Figure 4. It can be seen 

that the ETECRM model was significantly better than the GWPM in all ROIs. From V1 to LO, 

the percentage of those voxels that can be better encoded by our model are about 90%, which 

demonstrates significant advantage of end-to-end learning than hand-crafted Gabor features. 

The ETECRM almost exceeds all voxels, especially in V4 and LO, there are only a few voxels 

whose responses can be explained by the GWPM and the ETECRM model almost performed 

better in all voxels. Note that we selected subject 1 to demonstrate the results and analysis, and 

consistent results for subject 2 can be seen in the Appendices A. 

 

Figure 4: Comparison of prediction accuracy between the ETECRM and GWPM. (a) Each of the five axes 

displays a comparison between the prediction accuracy of the two models in specific visual ROI. In all five 

scatter plots, the ordinate and abscissa represent the prediction accuracy values of GWPM and ETECRM 

respectively. The green dashed lines indicate the significant prediction value of 0.27 (p < 0.001). The black dots 

indicate the voxels cannot be significantly encoded (under 0.27) by either of the two models. The red dots 
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indicate the voxels that can be better predicted by the ETECRM than the GWPM and vice versa for the cyan 

dots. (b) Distribution of the prediction accuracy difference between the ETECRM and GWPM. Prediction 

accuracy difference above 0 indicates higher prediction accuracy of the ETECRM, as marked by red colour, and 

vice versa for the cyan colour of the GWPM. The number on each side represents the fraction of voxels whose 

prediction accuracy are higher under that model. 

Next, we compare with the CNNM in terms of prediction accuracy in Figure 5. The ETECRM 

has higher accuracy than the CNNM in V1, V2, and V3, and V4, and slightly worse in LO. 

Especially for V1, about 80% voxels can be better encoded by the ETECRM. From V1 to LO, 

we can see that the advantage of the proposed ETECRM becomes less and less (Figure 5b), 

which indicates that higher-level feature representation matched with higher-level visual ROI 

become harder to learn in the end-to-end manner, and pre-trained CNN is trained from millions 

of samples that demonstrate the advantage in the encoding of high-level visual areas. 

 

Figure 5: Comparison of prediction accuracy between the CNNM and the ETECRM. All definitions in the 

subplots are the same as Figure s, except that here the control model is the CNNM. 
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Model comparison by sorting voxels in prediction accuracy 

In addition, we extracted those voxels whose responses can be significantly predicted by each 

of the three models (PC > 0.27) and sorted them in a descending order of the prediction 

accuracy in the Figure 6. Overall, the ETECRM (red lines in Figure 6) and the CNNM (blue 

lines in Figure 5) are obviously better than the GWPM (cyan lines in Figure 6). Hence, we 

mainly focus on comparing the ETECRM and the CNNM. The ETECRM model could 

significantly predict responses of 41.1%, 31.1%, 17.3%, 16.2% and 9.48% voxels in V1, V2, 

V3, V4, and LO, respectively. In V1, V2, and V4, the prediction accuracy of the top voxels 

calculated by the ETECRM is higher than that of CNNM. In V3, similar performance was 

obtained by the ETECRM and CNNM. In LO, the ETECRM behaves worse than CNNM. We 

speculate that relatively more data is required for encoding high-level visual ROIs that are 

responsible for high-level visual representation, and current less data suppresses the function 

of end-to-end manner, hence, reduce the encoding performance. 

 

 

Figure 6. Comparisons of the ETECRM, GWPM, and CNNM by sorting voxels in the descending order of 

prediction accuracy. Only those voxels on whom the prediction accuracy value exceeds 0.27 are plotted. Red, 

cyan and blue curves represent the ETECRM, the GWPM, and the CNNM, respectively. The CNNCRM 

exhibits significantly higher performance in lower level areas, such as V1 and V2. 

Discussion 

Performance of the proposed method 

In this study, we proposed an ROI-wise visual encoding using an end-to-end CNN regression 

model. Through selective optimization, we successfully trained the model, and obtained higher 

encoding performance than the two-step manner of models (GWP and CNN features based 
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models). From the perspective of effectiveness, the proposed method avoid the local optimal 

of two-step manner of encoding, and automatically learn better matching features with brain 

activity. From the perspective of efficiency, the proposed method accomplished the ROI-wise 

encoding with better performance. In conclusion, effective and efficient encoding is 

accomplished based on the proposed method.  

End-to–end manner on visual decoding 

Visual decoding that decodes information (category or presented image stimuli) according to 

the acquired fMRI data, compared to with visual encoding. Visual decoding is usually 

accomplished in one inverse two-step manner. Similarly, specific feature space are required as 

middle bridge that connected voxels and stimuli. However, whether to be able to find matching 

features also limits the performance of decoding. In this way, the end-to-end manner that can 

learn the best matching features from fMRI data still can contribute to the decoding domain, 

and make it easy to reconstruct images based on voxels, regions, and even all visual cortices. 

Hence, the end-to-end manner may drive the advance of encoding and decoding. 

How to better encode high-level visual ROIs 

Regardless of two-step manner of encoding or end-to-end manner of encoding, the encoding 

performance of high-level visual ROIs such as LO are worse compared to the encoding of low-

level visual ROIs. High-level visual ROIs are responsible for complex semantic visual 

representations, which are hard to characterize. In this way, trying seeking matching features 

with those voxels in computer vision domain seems hard to realize. In contrast, the proposed 

method still seems helpless. However, the encoding results have validated the advantage of 

end-to-end manner, and we think that complex high-level ROIs can be encoded with more 

fMRI data, namely the potential of end-to-end manner was restricted by current limited number 

of fMRI data, compared to big data that have million samples in computer vision. End-to-end 

manner have leaded the rapid development with big data at hand in computer vision, inspired 

by which, collecting more data will be the next direction for visual encoding domain. Although 

minority of researchers [35]start to be aware of the problem of data, their volume of data still 

cannot be called “big data”, comparing to classic ImageNet in the computer vision domain. 

Visual encoding can refer to the development path of computer vision domain, and the 

encoding domain might be taking off by combining end-to-end manner and big fMRI data. 

Conclusions 

Traditional the two-step manner of encoding including firstly choosing well matching feature 

transformation and secondly encoding voxels through linear regression in voxel-wise manner. 

However, it is hard to determine well matched features, and easily falls into local optimal status, 

and cannot approach to global optimal status. The two-step and voxel-wise manner restrict the 

encoding effectiveness and efficiency, respectively. In this study, we proposed the ETECRM 

for ROI-wise encoding and designed the selective optimization to further improve the ROI-

wise encoding performance. In this way, we successfully realized one effective and efficient 

encoding model, and presented better encoding performance for V1, V2, and V3. In addition, 

one referable way to develop computation neuroscience model from perspective of computer 

vision was provided and further we give rise to consideration of potential of end-to-end manner 

and large volume of fMRI data for the future visual encoding.  
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Appendices A. Results for subject 2 

The results of subjects 2 were consistent with those of subjects 1. Figure. A1, A2, and A3 

correspond to the section “Comparison with two-step manner of visual encoding” in the main 

text. 
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Figure A.1. Comparison of prediction accuracy between the ETECRM and GWPM for subject 2. Refer to 

Figure 4 for a detailed description of the plot elements. 
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Figure A.2. Comparison of prediction accuracy between the ETECRM and GWPM for subject 2. Refer to 

Figure 5 for a detailed description of the plot elements. 
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Figure A.3. Comparisons of the ETECRM, GWPM, and CNNM by sorting voxels in the descending order of 

prediction accuracy for subject 2. Refer to Figure 6 for a detailed description of the plot elements. 
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